1. The force required to keep a body in uniform circular motion is
a) Centripetal force
b) Centrifugal force
c) Frictional force
d) Breaking force
2. Consider an object of mass m that moves in a circular orbit with constant velocity v_{0} along the inside of a cone. Assume the wall of the cone to be frictionless. Find radius of the orbit

a) $\frac{v_{0}{ }^{2}}{g} \tan ^{2} \phi$
b) $\frac{v_{0}{ }^{2}}{g} \cos ^{2} \phi$
c) $\frac{v_{0}{ }^{2}}{g} \tan \phi$
d) $\frac{v_{0}{ }^{2}}{g}$
3. A body moves along circular path of radius 50 m and the coefficient of friction is 0.4 . What should be its angular velocity in rad/s if it is not to slip from the surface? $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
a) 2.8
b) 0.28
c) 0.27
d) 2.7
4. If the distance between two bodies is doubled, the force of gravitational attraction between them
a) Becomes four times
b) Is doubled
c) Is reduced to one-fourth
d) Is reduced to half
5. If the earth were to stop rotating, the value of acceleration due to gravity at Mumbai will
a) Increase
b) Decrease
c) Become zero
d) Remain unchanged
6. The binding energy of a body does not depend upon
a) Mass of the planet
b) Its distance from the centre of the planet
c) Mass of the body
d) Shape of the body
7. Four point masses, each of value m, are placed at the corners of a square ABCD of side l. The moment of inertia of this system about an axis passing through A and parallel to BD is
a) $\sqrt{3} \mathrm{~m} l^{2}$
b) $3 m l^{2}$
c) $m l^{2}$
d) $2 \mathrm{~m} l^{2}$
8. On account of melting of ice at the north pole, the moment of inertia of spinning earth
a) Increases
b) Decreases
c) Remains unchanged
d) Depends on the time
9. A hollow sphere of mass ' M ' and radius ' R ' is rotating with angular frequency ' ω '. If suddenly stops rotating and 75\% of kinetic energy is converted to heat. If ' S ' is the specific heat of the material in $\mathrm{J} / \mathrm{kg} \mathrm{K}$ then rise in temperature of the sphere is (M.I. of hollow sphere $=\frac{2}{3} \mathrm{MR}^{2}$)
a) $\frac{R \omega}{4 S}$
b) $\frac{R^{2} \omega^{2}}{4 S}$
c) $\frac{R \omega}{2 S}$
d) $\frac{R^{2} \omega^{2}}{2 S}$
10. Starting from the origin, a body oscillates simple harmonically with a period of 2s. After what time will its kinetic energy be 75% of the total energy?
a) $\frac{1}{4} \mathrm{~s}$
b) $\frac{1}{3} \mathrm{~s}$
c) $\frac{1}{12} \mathrm{~s}$
d) $\frac{1}{6} \mathrm{~s}$
11. A second's pendulum is placed in a space laboratory orbiting around the earth at a height 3 R , where R is the radius of the earth. The time period of the pendulum is
a) Zero
b) $2 \sqrt{3} \mathrm{~s}$
c) 4 s
d) Infinite
12. If the length of a simple pendulum is comparable to the radius of the earth, then find the time period for oscillation
a) $2 \pi \sqrt{\frac{L}{g}}$
b) $2 \pi \sqrt{\frac{1}{g\left(\frac{1}{L}+\frac{1}{R}\right)}}$
c) $2 \pi \sqrt{\frac{R}{g}}$
d) $2 \pi \sqrt{\frac{L+R}{g}}$
13. A catapault is stretched with a force of 100 N which changes the length of the band from 10 cm to 14 cm . A stone of mass 1 kg is fixed to the catapault and aimed at a mango. Find the velocity with which it will leave the catapault
a) $1 \mathrm{~m} / \mathrm{s}$
b) $1 \mathrm{~cm} / \mathrm{s}$
c) $2 \mathrm{~m} / \mathrm{s}$
d) $2 \mathrm{~cm} / \mathrm{s}$
14. The Poisson's ratio cannot have the value
a) 0.7
b) 0.2
c) 0.1
d) 0.5
15. A glass tube of internal diameter 3.5 cm and thickness 0.5 cm is held vertically with its lower end immersed in water. The downward pull on the tube due to surface tension (S.T. of water $=0.074 \mathrm{~N} / \mathrm{m})$ is
a) $1.86 \times 10^{-2} \mathrm{~N}$
b) $1.86 \times 10^{-3} \mathrm{~N}$
c) $1.86 \times 10^{-1} \mathrm{~N}$
d) 1.86 N
16. If T is the surface tension, the work done in blowing a soap bubble of radius R is
a) $4 \pi R^{2} T$
b) $\frac{4}{3} \pi R^{3} T$
c) $8 \pi R^{2} T$
d) $\frac{4 \pi R^{2}}{T}$
17. Angle of contact with a solid surface does not depend on
a) Angle between solid and liquid surfaces
b) The nature of liquid and solid
c) The nature of solid surface
d) Medium of the liquid surface
18. When two sound waves with a phase difference of $\pi / 2$ and each having amplitude A and frequency ω are superimposed on each other, then the maximum amplitude and frequency of resultant wave is
a) $\frac{A}{\sqrt{2}}: \frac{\omega}{2}$
b) $\frac{A}{\sqrt{2}}: \omega$
c) $\sqrt{2} \mathrm{~A}: \frac{\omega}{2}$
d) $\sqrt{2} \mathrm{~A}: \omega$
19. Two sound waves with wavelengths 5.0 m and 5.5 m respectively, each propagate in a gas with velocity $330 \mathrm{~m} / \mathrm{s}$. We expect the following number of beats per second
a) 1
b) 6
c) 12
d) 0
20. In resonance,
a) The energy released by the vibrating body is maximum
b) Energy absorbed by the vibrating body is maximum
c) Neither energy is absorbed by the vibrating body nor energy is released
d) Energy form does not evolved
21. Node is that point in longitudinal stationary waves where pressure
a) Difference is maximum
b) Is maximum
c) Is minimum
d) Difference is minimum
22. If we study the vibration of a pipe open at both ends, then which of the following statements is not true?
a) Open end will be antinode
b) Odd harmonics of the fundamental frequency will be generated
c) All harmonics of the fundamental frequency will be generated
d) Pressure change will be maximum at both ends
23. The value of wavelength of maximum energy by a blackbody is inversely proportional to the absolute temperature. This law is
a) Stefan's law
b) Wien's law
c) Kirchoff's law
d) Newton's law
24. Mean kinetic energy (or average energy) per gm molecule of a monoatomic gas is given by
a) $\frac{3}{2} \mathrm{RT}$
b) $\frac{1}{2} \mathrm{k}_{\mathrm{B}} \mathrm{T}$
c) $\frac{1}{2} \mathrm{RT}$
d) $\frac{3}{2} \mathrm{k}_{\mathrm{B}} \mathrm{T}$
25. The molar heat capacity in a process of a diatomic gas, if it does a work of $\frac{Q}{4}$ when a heat of Q is supplied to it, is
a) $\frac{2}{5} R$
b) $\frac{5}{2} R$
c) $\frac{10}{3} R$
d) $\frac{6}{7} R$
26. The refractive index of glass w.r.t a medium is $\frac{4}{3}$. If $v_{m}-v_{g}=6.25 \times 10^{7} \mathrm{~m} / \mathrm{s}$, then the velocity of light in the medium will be
a) $2.15 \times 10^{8} \mathrm{~m} / \mathrm{s}$
b) $2.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
c) $2.25 \times 10^{8} \mathrm{~m} / \mathrm{s}$
d) $1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
27. Unpolarized light falls on two polarizing sheets placed one on top of the other. What must be the angle between the characteristic directions of the sheets if the intensity of the final transmitted light is one-third the maximum intensity of the first transmitted beam?
a) 75°
b) 55°
c) 35°
d) 15°
28. Monochromatic light of wavelength 600 nm is used in a Young's double slit experiment. One of the slits is covered by a transparent sheet of thickness $18 \mu \mathrm{~m}$ made of a material of refractive index 1.6. The number of fringes that shift due to the introduction of the sheet is
a) 18
b) 10
c) 20
d) 8
29. Intensity of two waves which produce interference are $100: 1$. The ratio of maximum and minimum intensities is
a) $121: 81$ b) $100: 1$
c) $101: 99$
d) $100: 99$
30. If the ratio of intensities of two waves is $1: 25$, then the ratio of their amplitudes will be
a) $1: 25$
b) $5: 1$
c) $26: 24$
d) $1: 5$
31. A capacitor of $20 \mu \mathrm{~F}$ charged up to 500 volts in connected in parallel with another capacitor of $10 \mu \mathrm{~F}$ which is charged up to 200 V . The common potential is
a) 500 V
b) 400 V
c) 300 V
d) 200 V
32. Calculate the energy stored in the 6 C capacitor when Switch-1 is closed. Switch-2 is closed now. Find the energy stored in the 3C capacitor (in S.I. units)

a) Zero
b) 12
c) 15
d) 18
33. For the network shown in the figure, the value of the current i is

a) $\frac{9 \mathrm{~V}}{35}$
b) $\frac{5 \mathrm{~V}}{18}$
c) $\frac{5 \mathrm{~V}}{9}$
d) $\frac{18 \mathrm{~V}}{5}$
34. In the given circuit diagram, the internal resistance of the cell is negligible. The ratio of the currents $\mathrm{I}_{2} / \mathrm{I}_{1}$ is

a) $\frac{1}{2}$
b) 1
c) 2
d) 4
35. Resistors, each of value 2Ω, are arranged as shown in figure. The equivalent resistance between points A and B is

a) 1Ω
b) $\frac{1}{3} \Omega$
c) $\frac{5}{2} \Omega$
d) $\frac{2}{5} \Omega$
36. The deflection in a moving coil galvanometer falls from 50 divisions to 10 divisions, when a shunt of 12Ω is connected across it. The resistance of the galvanometer is
a) 24Ω
b) 36Ω
c) 60Ω
d) 48Ω
37. A 200 turn rectangular coil measuring $0.02 \mathrm{~m} \times 0.08 \mathrm{~m}$ of an ammeter is in a magnetic field of induction 0.2 tesla. The torsional constant of the suspension fibre is 5×10^{-7} newton \times metre/degree. The maximum reading of the ammeter corresponds to a deflection of the coil through 45°. If the magnetic field is radial, then the maximum
current that can be measured with this ammeter is
a) $3.5 \times 10^{-4} \mathrm{~A}$
b) $1.75 \times 10^{-4} \mathrm{~A}$
c) $7.0 \times 10^{-4} \mathrm{~A}$
d) $14.0 \times 10^{-4} \mathrm{~A}$
38. A long wire carrying a steady current is bent into a single coil such that magnetic induction at centre is B. then same wire is bent to form a coil of smaller radius of n turns when magnetic induction at centre is B^{\prime}. Then
a) $\mathrm{B}^{\prime}=\mathrm{B}$
b) $\mathrm{B}^{\prime}=\mathrm{nB}$
c) B^{\prime}
$=\mathrm{n}^{2} \mathrm{~B}$
d) $B=n^{2} B^{\prime}$
39. A neutral point in the magnetic field is a point, where
a) Magnetic moment of the magnet is balanced by the magnetic field of the earth
b) Magnetic field due to the magnet is zero
c) Magnetism is strongest
d) Earth's magnetic field is exactly neutralised by the field due to the magnet
40. Temperature above which a ferromagnetic substance becomes paramagnetic is called
a) Critical temperature
b) Boyle's temperature
c) Debye's temperature d
d) Curie temperature
41. When the current changes from +2 A to -2 A in 0.05 second, an e. m. f. of 8 volt is induced in a coil. The coefficient of self induction of the coil is
a) 0.1 H
b) 0.2 H
c) 0.4 H
d) 0.6 H
42. In a circuit L, C and R are connected in series with an alternating voltage source of frequency f. The current leads the voltage by 45°. The value of C is
a) $\frac{1}{2 \pi f(2 \pi f L+R)}$
b) $\frac{1}{\pi f(2 \pi f L+R)}$
c) $\frac{1}{2 \pi f(2 \pi f L-R)}$
d) $\frac{1}{\pi f(2 \pi f L-R)}$
43. Relation between the stopping potential V_{0} of a metal and the maximum velocity of the photoelectrons is
a) $V_{0} \propto \frac{1}{v}$
b) $V_{0} \propto \frac{1}{v^{2}}$
c) $V_{0} \propto v^{2}$
d) $V_{0}=v$
44. The stopping potential $\left(\mathrm{V}_{0}\right)$ versus frequency (v) plot of a substance is shown in figure. The threshold wave length is

a) $5 \times 10^{14} \mathrm{~m}$
b) $6000 \AA$
c) $5000 \AA$
d) Can not be estimated from given data
45. According to Bohr's postulates, which of the following quantities takes discrete values?
a) Kinetic energy
b) Angular momentum
c) Potential energy
d) Linear momentum
46. If the nuclear radius of ${ }^{27} \mathrm{Al}$ is 3.6 Fermi, the approximate nuclear radius of ${ }^{64} \mathrm{Cu}$ in Fermi is
a) 2.4
b) 1.2
c) 4.8
d) 3.6
47. Which of the following represents standard symbols for transistors?

(X)

(Y)
a) Both represent p-n-p transistor
b) Both represent n-p-n transistor
c) X represents p-n-p transistor and Y represents n-p-n transistor
d) X represents n-p-n transistor and Y represents p-n-p transistor
48. The maximum wavelength which a photodiode can detect with $E_{g}=0.74 \mathrm{eV}$ is,
a) 1680
b) 1764
nm nm
c) 1847 nm
d) 1932 nm
49. A blue glass plate is kept below sodium lamp, its colour will be \qquad .
a) White
b) Yellow
c) Blue
d) Black
50. Hypermetropia can be corrected using \qquad .
a)
Concave lens
b)
Concave
mirror
c) $\begin{aligned} & \text { Concave } \\ & \text { lens }\end{aligned}$
 mirror
51. In a closest rock-salt structure (edge length, a), which of the following expressions is correct?
a) $r_{a}=\sqrt{2} a$
b) $r_{a}=\frac{a}{\sqrt{2}}$
c) $r_{a}=\frac{a}{2 \sqrt{2}}$
d) $r_{a}=\frac{a}{4}$
52. Which of the following fcc structure contains cations in alternate tetrahedral voids?
a) NaCl
b) ZnS
c) $\mathrm{Na}_{2} \mathrm{O}$
d) CaF_{2}
53. Which of the following lattices does not have only primitive Bravais lattice?
a) Lattice with unit cell monoclinic
b) Lattice with unit cell trigonal
c) Lattice with unit cell triclinic
d) Lattice with unit cell hexagonal
54. The number of octahedral sites per sphere in
fcc structure is
a) 2
b) 1
c) 4
d) 3
55. The vapour pressure of a solvent decreased by 10 mm of mercury when a non-volatile solute was added to the solvent. The mol fraction of the solute in the solution is 0.2 . What should be the mole fraction of the solvent, if the decrease in the vapour pressure is to be 20 mm of mercury?
a) 0.8
b) 0.6
c) 0.4
d) 0.2
56. Which statement is wrong regarding osmotic pressure (P), volume (V) and temperature (T)?
a) $\mathrm{P} \propto \frac{1}{V}$ if T is constant
b) $P \propto T$ if V is constant
c) $P \propto V$ if T is constant
d) PV is constant if T is constant
57. The elevation in boiling point of a solution of 10 g of a binary electrolyte(molecular mass 100) in 100 g of water is $\Delta \mathrm{T}_{\mathrm{b}}$. The value of K_{b} for water is
a) $\frac{\Delta T_{b}}{2}$
b) 10
c) $10 \Delta T_{b}$
d) $\frac{\Delta T_{b}}{10}$
58. At 300 K when a solute is added to a solvent its vapour pressure over the mercury reduces from 50 mm to 45 mm . The value of mole fraction of solute will be
a) 0.005
b) 0.010
c) 0.100
d) 0.900
59. In which of the following reaction $\Delta \mathrm{H}$ is greater than ΔU ?
a) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
b) $\mathrm{PCl}_{5(\mathrm{~g})} \rightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
c) $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
d) $\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}$
60. Which of the following is an intensive property?
a) Enthalpy
b) Mass
c) Temperature
d) Volume
61. The enthalpy of bond dissociation of $\mathrm{H}_{2(\mathrm{~g})}$, $\mathrm{C1}_{2(\mathrm{~g})}$ and $\mathrm{HC1}_{(\mathrm{g})}$ are 104,58 and $103 \mathrm{kcal} \cdot \mathrm{mol}^{-}$ ${ }^{1}$ respectively. The enthalpy of formation of $\mathrm{HC}_{(\mathrm{g})}$ will be
a) $-44 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$
b) $-4.4 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$
c) $-22 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$
d) $-220 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$
62. For a reaction $\mathrm{R}_{1}, \Delta \mathrm{G}=\mathrm{xkJ} \mathrm{mol}^{-1}$. For a reaction $\mathrm{R}_{2}, \Delta \mathrm{G}=y \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$. Reaction R_{1} is nonspontaneous but along with R_{2} it is
spontaneous. This means that
a) x is negative, y is positive but in magnitude x $>y$
b) x is positive, y is negative but in magnitude y
$>x$
c) Both x and y are negative but not equal
d) Both x and y are positive but not equal
63. The e.m.f. of the following cell,
$\left.\mathrm{Zn}\left|\begin{array}{c}\mathrm{ZnSO}_{4} \\ (1 \mathrm{M})\end{array}\right|\left|\begin{array}{c}\mathrm{H}^{+} \\ (1 \mathrm{M})\end{array}\right| \begin{gathered}\mathrm{H}_{2} \\ (\mathrm{~g}, 1 \mathrm{~atm})\end{gathered} \right\rvert\, \mathrm{Pt} \quad$ is 0.769 volts.

The reduction potential of Zn electrode will be
a) Zero volt
b) 0.769 V
c) -0.769 V
d) -7.69 V
64. In a cell containing zinc electrode and hydrogen electrode, the zinc electrode acts as
a) Anode
b) Cathode
c) Null electrode
d) Either (a) or (b)
65. Which of the following ions will move towards anode during electrolysis of fused NaOH ?
a) Na^{+}ions
b) H^{+}ions
c) OH^{-}ions
d) O^{2-} ions
66. The e.m.f. of the cell depends upon
a) Temperature
b) Nature of electrodes
c) Concentration of ions in solution
d) All of these
67. The rate constant of a reaction depends on
a) Initial concentration of the reactants
b) Time of reaction
c) Temperature
d) Extent of reaction
68. The Arrhenious equation is
a) $A=k e^{-E_{a} / R T}$
b) $\frac{A}{k}=e^{-E_{a} / R T}$
c) $k=A e^{E_{a} / R T}$
d) $k=A e^{-R T / E a}$
69. The overall rate of a reaction is governed by
a) The rate of the fastest intermediate step
b) The rate of the slowest intermediate step
c) The sum total of the rates of all the intermediate steps
d) The average of the rates of all the intermediates steps
70. The principal reducing agent in the metallurgy of iron is \qquad —.
a) Aluminium
b) Carbon
c) Carbon monoxide
d) Carbon dioxide
71. For which of the following polling is used?
a) Reducing metal oxide
b) Oxidising metal to oxide
c) Oxidising impurities
d) Reducing metal sulphate to metal sulphide
72. Which method is not correct for refining of crude metals?
a) Zone refining : Silicon
b) Mond process : Aluminium
c) Electrolytic refining : Blister copper
d) Liquation : Tin
73. Which of the following leaves no residue on heating?
a) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
b) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
c) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$
d) NaNO_{3}
74. $\mathrm{Cl}_{2} \mathrm{O}_{7}$ can be regarded as an anhydride of
a) Hypochlorous acid
b) Chlorous acid
c) Chloric acid
d) Per chloric acid
75. Oxygen molecule shows:
a) Paramagnetism
b) Dimagnetism
c) Ferro magnetism
d) Ferri magnetism
76. Which of the following B) d Block Elements Characteristics Of Transition Metals is associated with their catalytic activity?
a) High heat of atomisation
b) Paramagnetic behavior
c) Colour of hydrated ions
d) Variable oxidation states
77. Find out the smallest ion from those given below.
a) Gd^{+3}
b) Sm^{+3}
c) Yb^{+3}
d) Ce^{+3}
78. Which is the strongest base among
a) $\left.\left.\left.\mathrm{La}(\mathrm{OH})_{3} \mathrm{~b}\right) \mathrm{Lu}(\mathrm{OH})_{3} \mathrm{c}\right) \mathrm{Ce}(\mathrm{OH})_{3} \mathrm{~d}\right) \mathrm{Yb}(\mathrm{OH})_{3}$
79. The compounds $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right) 5 \mathrm{C}_{1}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$ are example of
a) Linkage Isomerism
b) Hydrate Isomerism
c) Ionisation Isomerism
d) Co-ordination Isomerism
80. Which of the following complexes can form d and l isomers?
a) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+2}$
c) $\mathrm{Cis}\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$
d) $\operatorname{Trans}\left[\mathrm{Co}(\mathrm{en}) \mathrm{Cl}_{2}\right]$
81. The compound which is not an organometallic compound is
a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}$
b) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Ti}\left(\mathrm{OC}_{3} \mathrm{H}_{7}\right)_{2}$
c) Both (a) and (b)
d) $\mathrm{Ti}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{4}$
82. The complex ion $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ is
a) Square planer and diamagnetic
b) Square planer and paramagnetic
c) Tetrahedral and diamagnetic
d) Tetrahedral and paramagnetic
83. The value of Stability constant depends upon
a) The charge on the central metal ion
b) Nature of the ligand
c) Chelation
d) All of the above
84. A mixture of equal parts of $(+)$ and $(-)$ enantiomers is called
a) Homogeneous mixture
b) Equilibrium mixture
c) Racemic mixture
d) Resonance hybrid
85. The correct statements about the compound given below is

a) The compound is optically active
b) The compound possesses centre of symmetry
c) The compound possesses plane of symmetry
d) The compound possesses axis of symmetry
86. The general formula of monohydric phenol is
a) $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH}$
b) $\mathrm{Ar}-\mathrm{OH}$
c) $\mathrm{Ar}-\mathrm{X}$
d) $\mathrm{Ar}-\mathrm{CHO}$
87. Corresponding to alkanes ethers are their
a) Alkyl derivative
b) Dialkyl derivative
c) Alkoxyderivative
d) Trialkyl derivative
88. Clemmensen's reduction will convert cyclohexanone into
a) n-hexane
b) Benzene
c) Cyclohexane
d) Cyclohexanol
89. Isopropyl methyl ketone when treated with $\mathrm{Zn}-\mathrm{Hg}$ and concentrated hydrochloric acid give
a) Iso-butane
b) Iso-pentane
c) n-pentane
d) Neo-pentane
90. Which of the following are function isomers?
a) $\mathrm{CH}_{3} \mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
b) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CHO}$
c) HCHO and $\mathrm{CH}_{3} \mathrm{OH}$
d) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ and $\mathrm{CH}_{3} \mathrm{OCH}_{3}$
91. Amines are more basic than
a) Alcohols b
b) NaOH
c) LiOH
d) KOH
92. Possible isomers of $\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{~N}$ are
a) Three
b) Four
c) Five
d) Six
93. The following compound on reaction with HNO_{2} gives an alcohol
a) RNH_{2}
b) $\mathrm{R}-\mathrm{CONH}_{2}$
c) $\mathrm{R}_{2} \mathrm{NH}$
d) $\mathrm{R}_{3} \mathrm{~N}$
94. Which one of the following compound contains nitrogen?
a) Proteins
b) Carbohydrates
c) Oils
d) Fats
95. The number of chiral carbon atom present in a glucose molecule is
a) 16
b) 8
c) 4
d) 2
96. Natural silk is a
a) Polyester
b) Polyamide
c) Polyacid
d) Polysaccharide
97. Polymer nylon -6 is shown as
a)

b) $-\mathrm{NH}-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{C}-$
c) $\left[\begin{array}{c}\stackrel{\mathrm{O}}{\|} \\ -\mathrm{C}-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{NH}-\end{array}\right]_{\mathrm{n}}$
d) $\left[\begin{array}{c}\mathrm{O} \\ \| \\ -\mathrm{C}-\left(\mathrm{CH}_{2}\right)_{6}-\mathrm{NH}-\end{array}\right]_{\mathrm{n}}$
98. Which one of the following is used to make non stick cook ware
a) PVC
b) Polystyrene
c) Polyethylene
d) Polytetrafluoro ethylene
99. The adsorption of hydrogen by metals is called
a) Adsorption
b) occlusion
c) Hydrogenation
d) dehydrogenation
100. Only one element of \qquad forms hydride
a) Group 6
b) Group 7
c) Group 8
d) Group 9
101. Which of the following is a tautology
a) $p \rightarrow(p \wedge q)$
b) $q \wedge(p \rightarrow q)$
c) $\sim(p \rightarrow q) \leftrightarrow p \wedge \sim q$
d) $(p \wedge q) \leftrightarrow \sim q$
102. The statement $\sim(p \leftrightarrow \sim q)$ is
a) A tautology
b) A fallacy
c) Equivalent to $p \leftrightarrow q$
d) Equivalent to $\sim p \leftrightarrow q$
103. When the compound statement is true for all its components then the statement is called
a) Negation statement
b) Tautology statement
c) Contradiction statement
d) Contingency statement
104.

The inverse of $\left[\begin{array}{ccc}1 & 2 & 4 \\ 3 & -19 & 7 \\ 2 & 4 & 8\end{array}\right]$ is
a) $\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 9 & 7 \\ 2 & 1 & 8\end{array}\right]$
b) $\left[\begin{array}{ccc}1 & 1 & 1 \\ 19 & 7 & 8 \\ 2 & 1 & 3\end{array}\right]$
c) $\left[\begin{array}{lll}3 & 1 & 4 \\ 1 & 2 & 3 \\ 4 & 5 & 8\end{array}\right]$
d) Does not exist
105. For each real number x such that $-1<x<1$, let $\mathrm{A}(x)$ be the matrix $(1-x)^{-1}\left[\begin{array}{cc}1 & -x \\ -x & 1\end{array}\right]$ and $z=\frac{x+y}{1+x y}$. Then,
a) $\mathrm{A}(z)=\mathrm{A}(x)+\mathrm{A}(y)$
b) $\begin{aligned} & \mathrm{A}(z) \\ & =\mathrm{A}(x)[\mathrm{A}(y)]^{-1}\end{aligned}$
c) $\mathrm{A}(z)=\mathrm{A}(x) \mathrm{A}(y)$
d) $\mathrm{A}(z)=\mathrm{A}(x)-\mathrm{A}(y)$
106.If A and B are two square matrices such that $B=-A^{-1} B A$, then $(A+B)^{2}=$
a) 0
b) $A^{2}+B^{2}$
c) $A^{2}+2 A B+B^{2}$
d) $A+B$
107. $\tan \left(\cos ^{-1} x\right)$ is equal to
a) $\frac{\sqrt{1-x^{2}}}{x}$
b) $\frac{x}{1+x^{2}}$
c) $\frac{\sqrt{1+x^{2}}}{x}$
d) $\sqrt{1-x^{2}}$
108. If $\mathrm{a}=9, \mathrm{~b}=8$ and $\mathrm{c}=x$ satisfies $3 \cos \mathrm{C}=2$, then
a) $x=5$
b) $x=6$
c) $x=4$
d) $x=7$
109. In $\triangle A B C, \operatorname{cosec} A(\sin B \cos C+\cos B \sin C)=$
a) c / a
b) a / c
c) 1
d) $c / a b$
110. If the angle between the pair of straight lines represented by the equation $x^{2}-3 x y+\lambda y^{2}+$ $3 x-5 y+2=0$ is $\tan ^{-1}\left(\frac{1}{3}\right)$, where ' λ ' is a non-negative real number. Then λ is
a) 2
b) 0
c) 3
d) 1
111.The acute angle formed between the lines joining the origin to the points of intersection of the curve $x^{2}+y^{2}-2 x-1=0$ and the line $x+y=1$ is
a) $\tan ^{-1}\left(-\frac{1}{2}\right)$
b) $\tan ^{-1} 2$
c) $\tan ^{-1} \frac{1}{2}$
d) 60°
112. $x^{2}+\mathrm{k}_{1} y^{2}+2 \mathrm{k}_{2} y=\mathrm{a}^{2}$ represents of pair of perpendicular straight lines if
a) $\mathrm{k}_{1}=1, \mathrm{k}_{2}=\mathrm{a}$
b) $\mathrm{k}_{1}=1, \mathrm{k}_{2}=-\mathrm{a}$
c) $\mathrm{k}_{1}=-1, \mathrm{k}_{2}= \pm \mathrm{a}$
d) $\mathrm{k}_{1}=1, \mathrm{k}_{2}= \pm \mathrm{a}$
113. The position vector of the point which divides internally in the ratio $2: 3$, the join of the points $2 \bar{a}-3 \bar{b}$ and $3 \bar{a}-2 \bar{b}$, is
a) $\frac{12}{5} \bar{a}+\frac{13}{5} \bar{b}$
b) $\frac{12}{5} \bar{a}-\frac{13}{5} \bar{b}$
c) $\frac{3}{5} \overline{\mathrm{a}}-\frac{2}{5} \overline{\mathrm{~b}}$
d) $\frac{2}{5} \overline{\mathrm{a}}-\frac{3}{5} \overline{\mathrm{~b}}$
114.If $\bar{a}, \bar{b}, \bar{c}$ are any three coplanar unit vectors, then
a) $\overline{\mathrm{a}} .(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=1$
b) $\overline{\mathrm{a}} .(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=3$
c) $(\bar{a} \times \bar{b}) \cdot \bar{c}=0$
d) $(\bar{c} \times \bar{a}) \cdot \bar{b}=1$
115. Three points whose position vectors
$\bar{a}+\bar{b}, \bar{a}-\bar{b}$ and $\bar{a}+k \bar{b}$ are said to be collinear, then the value of k is
a) Zero
b) Only negative real number
c) Only positive real number
d) Every real number
116. The direction cosines of a vector $\overline{\mathrm{r}}$ which is equally inclined with axes are
a) $1,1,1$
b) $-\frac{4}{\sqrt{3}},-\frac{4}{\sqrt{3}},-\frac{4}{\sqrt{3}}$
c) $\pm\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
d) $-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}$
117. If the angle between the lines whose direction ratios are $2,-1,2$ and $\mathrm{a}, 3,5$ be 45°, then $\mathrm{a}=$
a) 1
b) 2
c) 3
d) 4
118.If a line makes angles of 30° and 45° with X axis and Y-axis, then the angle made by it with Z -axis is
a) 45°
b) 60°
c) 120°
d) No real value
119. Perpendicular distance of point $(1,2,3)$ from the line $\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$ is
a) 8
b) 6
c) 7
d) 5
120.Equation of a line passing through the point with position vector $2 \hat{\imath}-3 \hat{\jmath}+4 \hat{k}$ and in the direction of the vector $3 \hat{\imath}+4 \hat{\jmath}-5 \hat{k}$ is
a) $4 x+3 y=17,5 y-4 z=1$
b) $4 x-3 y=17,5 y+4 z=1$
c) $4 x+5 y=12,3 y+4 z=1$
d) $4 x+3 z=17,5 y+4 z=1$
121. The shortest distance between lines $\bar{r}=(1-t) \hat{\imath}+(t-2) \hat{\jmath}+(3-t) \hat{k}$ and $\overline{\mathrm{r}}=(\mathrm{s}+1) \hat{\imath}+(2 s-1) \hat{\jmath}-(2 s+1) \hat{\mathrm{k}}$ is
a) $\frac{1}{\sqrt{2}}$
b) $\frac{7}{\sqrt{2}}$
c) $\frac{3}{\sqrt{2}}$
d) None of these
122. The equation of the plane containing the line $2 x-5 y+z=3, x+y+4 z=5$ and parallel to the plane $x+3 y+6 z=1$, is
a) $2 x+6 y+12 z=13$
b) $x+3 y+6 z=-7$
c) $x+3 y+6 z=7$
d) $2 x+6 y+12 z=-13$
123. The sine of the angle between the straight line
$\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ and the plane $2 x-2 y+z=5$ is
a) $\frac{10}{6 \sqrt{5}}$
b) $\frac{4}{5 \sqrt{2}}$
c) $\frac{\sqrt{2}}{10}$
d) $\frac{2 \sqrt{3}}{5}$
124. Inequation $y-x \leq 0$ represents
a) The half plane that contains the positive X axis
b) Closed half plane above the line $y=x$, which contains positive Y-axis
c) Half plane that contains the negative X -axis
d) None of these
125. The graph of $x \leq 2$ and $y \geq 2$ will be lies in the
a) First and second quadrant
b) Second and third quadrant
c) First and third quadrant
d) Third and fourth quadrant
126. If $\mathrm{f}(x)=\left\{\begin{array}{c}2 \quad ; 0 \leq x<1 \\ c-2 x ; 1 \leq x \leq 2\end{array}\right.$, is continuous at $x=1$, then c equals
a) 2
b) 4
c) 0
d) 1
127. If $\mathrm{f}(x)=\left\{\begin{array}{c}1+x^{2}, \text { when } 0 \leq x \leq 1 \\ 1-x, \text { when } x>1\end{array}\right.$, then
a) $\lim _{x \rightarrow 1^{+}} \mathrm{f}(x) \neq 0$
b) $\lim _{x \rightarrow 1^{-}} \mathrm{f}(x) \neq 2$
c) $\mathrm{f}(x)$ is discontinuous at $x=1$
d) None of these
128. The function $\mathrm{f}(x)=\frac{|3 x-4|}{3 x-4}$ is discontinuous at
a) $x=4$
b) $x=\frac{3}{4}$
c) $x=\frac{4}{3}$
d) $\frac{2}{3}$
129. If $y=\tan ^{-1}\left[\frac{\log \mathrm{e} x}{\log _{x}^{e}}\right]+\tan ^{-1}\left[\frac{8-\log x}{1+8 \log x}\right]$, then $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ is
a) 1
b) $\frac{1}{2}$
c) -1
d) 0
130. If $x=\sin t \cos 2 t$ and $y=\cos t \sin 2 \mathrm{t}$, then at $t=\frac{\pi}{4}$, the value of $\frac{d y}{d x}$ is equal to
a) -2
b) 2
c) $\frac{1}{2}$
d) $-\frac{1}{2}$
131. If $x=\operatorname{acos}^{3} \theta, y=\operatorname{ain}^{3} \theta$, then $\sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}}$ is equal to
a) $|\sec \theta|$
b) $\sec \theta$
c) $\tan ^{2} \theta$
d) $\sec ^{2} \theta$
132. The displacement of a particle in time t is given by $s=2 t^{2}-3 t+1$. The acceleration is
a) 1
b) 3
c) 4
d) 5
133. The diagonal of a square is changing at the rate of $0.5 \mathrm{~cm} / \mathrm{sec}$. Then the rate of change of area, when the area is $400 \mathrm{~cm}^{2}$, is equal to
a) $20 \sqrt{2} \mathrm{~cm}^{2} / \mathrm{sec}$
b) $10 \sqrt{2} \mathrm{~cm}^{2} / \mathrm{sec}$
c) $\frac{1}{10 \sqrt{2}} \mathrm{~cm}^{2} / \mathrm{sec}$
d) $\frac{10}{\sqrt{2}} \mathrm{~cm}^{2} / \mathrm{sec}$
134. The function f defined by $\mathrm{f}(x)=4 x^{4}-2 x+1$ is increasing for
a) $x<1$
b) $x>0$
c) $x<\frac{1}{2}$
d) $x>\frac{1}{2}$
135. $\int\left[\frac{1}{\log x}-\frac{1}{(\log x)^{2}}\right] \mathrm{d} x=$
a) $\frac{1}{\log x}+c$
b) $\frac{x}{\log x}+c$
c) $\frac{x}{(\log x)^{2}}+c$
d) None of these
136. $\int \frac{1}{\cos ^{6} x+\sin ^{6} x} \mathrm{~d} x=$
a) $\tan ^{-1}(\tan x-\sec x)+c$
b) $\tan ^{-1}(\sec x-\tan x)+\mathrm{c}$
c) $\sec ^{-1}(\tan x-\cot x)+c$
d) $\tan ^{-1}(\tan x-\cot x)+c$
137. The value of $\int \frac{1}{(x-5)^{2}} \mathrm{~d} x$ is
a) $\frac{1}{x-5}+c$
b) $-\frac{1}{x-5}+c$
c) $\frac{2}{(x-5)^{3}}+c$
d) $-2(x-5)^{3}+c$
138. If $\int_{0}^{2 \mathrm{a}} \mathrm{f}(x) \mathrm{d} x=2 \int_{0}^{\mathrm{a}} \mathrm{f}(x) \mathrm{d} x$, then
a) $\mathrm{f}(2 \mathrm{a}-x)=-\mathrm{f}(x)$
b) $\mathrm{f}(2 \mathrm{a}-x)=\mathrm{f}(x)$
c) $\mathrm{f}(\mathrm{a}-x)=-\mathrm{f}(x)$
d) $\mathrm{f}(\mathrm{a}-x)=\mathrm{f}(x)$
139. $\pi / 6$
$\int_{0}\left(2+3 x^{2}\right) \cos 3 x d x=$
a) $\frac{1}{36}(\pi+16)$
b) $\frac{1}{36}(\pi-16)$
c) $\frac{1}{36}\left(\pi^{2}-16\right)$
d) $\frac{1}{36}\left(\pi^{2}+16\right)$
140. The value of $\mathrm{I}=\int_{0}^{\pi / 2} \frac{(\sin x+\cos x)^{2}}{\sqrt{1+\sin 2 x}} \mathrm{~d} x$ is
a) 3
b) 1
c) 2
d) 0
141. The ratio of the areas bounded by the curves $y=\cos x$ and $y=\cos 2 x$ between $x=0, x=\frac{\pi}{2}$ and X -axis, is
a) $\sqrt{2}: 1$
b) $1: 1$
c) $1: 2$
d) $2: 1$
142. The area common to the parabola $y=2 x^{2}$ and $y=x^{2}+4$ is
a) $\frac{32}{3}$
b) $\frac{2}{32}$
c) $\frac{2}{3}$
d) $\frac{3}{2}$
143. Area included between the curves $y=x^{2}-3 x+2$ and $y=-x^{2}+3 x-2$ is
a) $\frac{1}{6}$ sq. unit
b) $\frac{1}{2}$ sq. unit
c) 1 sq. unit
d) $\frac{1}{3}$ sq. unit
144. The order and degree of the differential
equation $\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)^{1 / 3}+\left(x+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{1 / 2}=0$ are
a) $O=2, D=2$
b) $0=2, \mathrm{D}=\frac{1}{3}$
c) $0=\frac{1}{3}, \mathrm{D}=2$
d) $0=2, D=3$
145. If $x \mathrm{~d} y=y(\mathrm{~d} x+y \mathrm{~d} y), y>0$ and $y(1)=1$, then $y(-3)$ is equal to
a) 1
b) 3
c) 5
d) -1
146. Solution of the equation $x \mathrm{~d} y-\left[y+x y^{3}(1+\right.$ $\log x)] \mathrm{d} x=$
a) $-\frac{x^{2}}{y^{2}}=\frac{2 x^{3}}{3}\left(\frac{2}{3}+\log x\right)+\mathrm{c}$
b) $\frac{x^{2}}{y^{2}}=\frac{2 x^{3}}{3}\left(\frac{2}{3}+\log x\right)+\mathrm{c}$
c) $-\frac{x^{2}}{y^{2}}=\frac{x^{3}}{3}\left(\frac{2}{3}+\log x\right)+\mathrm{c}$
d) None of these
147. A random variable X has the following probability distribution:

$\mathrm{X}:$	1	2	3	4	5	6

P(X):	0.15	0.23	0.12	0.10	0.20	0.08	0.07

For the events $E=\{X$ is a prime number $\}$, $F=\{X<4\}$, the probability $P(E \cup F)$ is
a) 0.50
b) 0.77
c) 0.35
d) 0.87
148. If the p.d.f of a c.r.v X is
$\mathrm{f}(x)=$ K. $\mathrm{e}^{-0 x} ; \theta>0,0 \leq x<\infty$
$=0$; otherwise
Then $\mathrm{K}=$
a) i
b) $\frac{\theta}{2}$
c) θ
d) 2θ
149.If the vertex of a parabola be at origin and directrix be $x+5=0$, then length of its latus rectum is
a) 5
b) 10
c) 20
d) 40
150. If the latus rectum of an ellipse be equal to half of its minor axis, then its eccentricity is
a) $3 / 2$
b) $\sqrt{3} / 2$
c) $2 / 3$
d) $\sqrt{2} / 3$
: ANSWER KEY :

1)	a	2)	c	3)	b	4)	c	5)	a	6)	d	7)	b
8)	a	9)	b	10)	d	11)	d	12)	b	13)	c	14)	a
15)	a	16)	c	17)	a	18)	d	19)	b	20)	b	21)	a
22)	d	23)	b	24)	a	25)	c	26)	b	27)	b	28)	a
29)	a	30)	d	31)	b	32)	a	33)	b	34)	c	35)	a
36)	d	37)	a	38)	c	39)	d	40)	d	41)	a	42)	a
43)	c	44)	b	45)	b	46)	c	47)	c	48)	a	49)	d
50)	c	51)	c	52)	b	53)	a	54)	b	55)	b	56)	c
57)	a	58)	c	59)	b	60)	c	61)	c	62)	b	63)	c
64)	a	65)	c	66)	d	67)	c	68)	b	69)	b	70)	c
71)	a	72)	b	73)	b	74)	d	75)	a	76)	d	77)	c
78)	a	79)	b	80)	c	81)	d	82)	b	83)	d	84)	c
85)	a	86)	b	87)	c	88)	c	89)	b	90)	b	91)	a
92)	b	93)	a	94)	a	95)	c	96)	c	97)	c	98)	d
99)	b	100)	a	101)	c	102)	c	103)	b	104)	d	105)	c
106)	b	107)	a	108)	d	109)	c	110)	a	111)	b	112)	c
113)	b	114)	c	115)	d	116)	c	117)	d	118)	d	119)	c
120)	b	121)	c	122)	c	123)	c	124)	a	125)	a	126)	b
127)	c	128)	c	129)	d	130)	c	131)	a	132)	c	133)	b
134)	d	135)	b	136)	d	137)	b	138)	b	139)	d	140)	c
141)	d	142)	a	143)	d	144)	a	145)	b	146)	a	147)	b
148)	c	149)	c	150)	b								

: HINTS AND SOLUTIONS :

3 (b)
Using,
$\mathrm{v}=\sqrt{\mu \mathrm{rg}}=\sqrt{0.4 \times 50 \times 9.8}=\sqrt{196}$
$\mathrm{v}=14 \mathrm{~m} / \mathrm{s}$
$\omega=\frac{\mathrm{v}}{\mathrm{r}}=\frac{14}{50}=0.28 \mathrm{rad} / \mathrm{s}$
4 (c)
$\mathrm{r}^{\prime}=2 \mathrm{r}$
.....[Given]
Now, $\mathrm{F} \propto \frac{1}{\mathrm{r}^{2}}$
$\therefore \mathrm{F}^{\prime} \propto \frac{1}{(2 \mathrm{r})^{2}}=\frac{1}{4 \mathrm{r}^{2}} \Rightarrow \mathrm{~F}^{\prime}=\frac{\mathrm{F}}{4}$
\therefore Force is reduced to one-fourth
5 (a)
When the earth stops rotating, the centripetal force of $m R \omega^{2}$ vanishes. As a result of this, the acceleration due to gravity increases
$\mathrm{r}_{2}=\mathrm{r}_{4}=\mathrm{OA}=\frac{1}{\sqrt{2}}$ and $\mathrm{r}_{2}=l \sqrt{2}$
Moment of inertia of the system about given axis, $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}+\mathrm{I}_{4}$

$\Rightarrow \mathrm{I}=0+\mathrm{m}\left(\mathrm{r}_{2}\right)^{2}+\mathrm{m}\left(\mathrm{r}_{3}\right)^{2}+\mathrm{m}\left(\mathrm{r}_{4}\right)^{2}$
$\Rightarrow \mathrm{I}=\mathrm{m}\left(\frac{l}{\sqrt{2}}\right)^{2}+\mathrm{m}(l \sqrt{2})^{2}+\mathrm{m}\left(\frac{l}{\sqrt{2}}\right)^{2}$
$\therefore \mathrm{I}=3 \mathrm{ml}^{2}$
9 (b)

Rotational K.E. of sphere $=\frac{1}{2} \mathrm{I} \omega^{2}$
75% of K.E. $=$ Heat energy
$\therefore \frac{1}{2} \mathrm{I} \omega^{2} \times \frac{75}{100}=\mathrm{MS} \Delta \theta$
$\frac{1}{2} \times \frac{2}{3} M R^{2} \omega^{2} \times \frac{75}{100}=\operatorname{MS} \Delta \theta \quad\left[\because \mathrm{I}_{\text {sp }}=\frac{2}{3} \mathrm{MR}^{2}\right]$
$\frac{\mathrm{R}^{2} \omega^{2}}{4 \mathrm{~S}}=\Delta \theta$
10 (d)
Total energy of particle performing S.H.M.
$=\frac{1}{2} m \omega^{2} A^{2}$. Kinetic energy of particle performing
S.H.M. $=\frac{1}{2} m \omega^{2} A^{2} \cos ^{2}\left(\frac{2 \pi}{T}\right) t$

According to problem, kinetic energy $=75 \%$ of total energy
$\Rightarrow \frac{1}{2} m \omega^{2} A^{2} \cos ^{2}\left(\frac{2 \pi}{T}\right) t=\frac{3}{4}\left(\frac{1}{2} m \omega^{2} A^{2}\right)$
$\Rightarrow \cos ^{2}\left(\frac{2 \pi}{\mathrm{~T}}\right) \mathrm{t}=\frac{3}{4} \Rightarrow \cos \left(\frac{2 \pi}{\mathrm{~T}}\right) \mathrm{t}=\frac{\sqrt{3}}{2}$
$\Rightarrow\left(\frac{2 \pi}{\mathrm{~T}}\right) \mathrm{t}=\frac{\pi}{6} \Rightarrow \mathrm{t}=\frac{\mathrm{T}}{12} \mathrm{~s}$
$\therefore \mathrm{t}=\frac{1}{6} \mathrm{~s}$
11 (d)
In the given case, effective acceleration $g_{\text {eff }}=0$
$\therefore \mathrm{T}=\infty$
15 (a)
$\mathrm{F}=\mathrm{T} \times\left(2 \pi \mathrm{r}_{1}+2 \pi \mathrm{r}_{2}\right)$
$=\mathrm{T} \times 2 \pi \times(1.75+2.25) \times 10^{-2}$
$=0.074 \times 2 \times 3.14 \times 4 \times 10^{-2}$
$=1.86 \times 10^{-2} \mathrm{~N}$
16 (c)
$\mathrm{W}=\mathrm{T} \times$ Surface area of bubble
Since the soap bubble has two surfaces,
$W=T \times 2 \times 4 \pi R^{2}=8 \pi R^{2} T$
18 (d)
$A_{\text {max }}=\sqrt{A^{2}+A^{2}}=A \sqrt{2}$, frequency will remain same i.e. ω
19 (b)
Using, $\mathrm{v}=\mathrm{n} \lambda$ or $\mathrm{n}=\frac{\mathrm{v}}{\lambda}$ we get,
$\mathrm{n}_{1}=\frac{\mathrm{v}}{\lambda_{1}}=\frac{330}{5}=66 \mathrm{~Hz}$
and $\mathrm{n}_{2}=\frac{\mathrm{v}}{\lambda_{2}}=\frac{330}{5.5}=60 \mathrm{~Hz}$
Number of beats per second,
$n_{1}-n_{2}=66-60=6$
22 (d)
The air column in a pipe open at both ends can vibrate in a number of different modes subjected to the boundary condition that there must be an antinode at the open end. Hence option (A) is
correct
The ratio of frequencies when pipe is open at both the ends is given as,
n : $2 \mathrm{n}: 3 \mathrm{n}: 4 \mathrm{n}: 5 \mathrm{n}$
where $\mathrm{n}=\frac{\mathrm{v}}{2 \mathrm{~L}}$
\therefore Both odd as well even i.e., All harmonics are present
Hence, option (B) and (C) are correct
Pressure variation is minimum at antinode
\therefore Option (D) is incorrect
25 (c)
$d U=C_{v} d T=\left(\frac{5}{2} R\right) d T$
$\therefore \mathrm{dT}=\frac{2(\mathrm{dU})}{5 \mathrm{R}}$
From first law of thermodynamics,
$d U=d Q-d W=Q-\frac{Q}{4}=\frac{3 Q}{4}$
\therefore Molar heat capacity, $\mathrm{c}=\frac{\mathrm{dQ}}{\mathrm{dT}}=\frac{\mathrm{Q}}{\left(\frac{2(\mathrm{dU})}{5 \mathrm{R}}\right)}$
$=\frac{5 R Q}{2\left(\frac{3 Q}{4}\right)}=\frac{10}{3} \mathrm{R}$
26 (b)
${ }_{\mathrm{m}} \mu_{\mathrm{g}}=\frac{\mu_{\mathrm{g}}}{\mu_{\mathrm{m}}}=\frac{\mathrm{v}_{\mathrm{m}}}{\mathrm{v}_{\mathrm{g}}}=\frac{4}{3}$
$\therefore \frac{\mathrm{v}_{\mathrm{m}}-\mathrm{v}_{\mathrm{g}}}{\mathrm{v}_{\mathrm{g}}}=\frac{4-3}{3}=\frac{1}{3}$
Given that, $v_{\mathrm{m}}-\mathrm{v}_{\mathrm{g}}=6.25 \times 10^{7}$
$\therefore \mathrm{v}_{\mathrm{g}}=3 \times 6.25 \times 10^{7} \mathrm{~m} / \mathrm{s}$
$\therefore \mathrm{v}_{\mathrm{m}}=6.25 \times 10^{7}+3 \times 6.25 \times 10^{7}$
$\therefore=4 \times 6.25 \times 10^{7}=25 \times 10^{7}=2.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
27 (b)
$I^{\prime}=\frac{I}{2} \cos ^{2} \theta=\frac{I}{6}$
$\therefore \cos \theta=\frac{1}{\sqrt{3}} \quad \therefore \theta=55^{\circ}$
28 (a)
$\lambda=600 \mathrm{~nm}=600 \times 10^{-9} \mathrm{~m}$
$\mathrm{t}=18 \mu \mathrm{~m}=18 \times 10^{-6} \mathrm{~m}$
$\mathrm{S}=(\mu-1) \frac{\mathrm{tD}}{\mathrm{d}}$
Fringe width,
$X=\frac{\lambda \mathrm{D}}{\mathrm{d}}$
\therefore From equations (i) and (ii),
$S=\frac{(\mu-1) t . X}{\lambda}$
\therefore No. of fringes $=\frac{\mathrm{s}}{\mathrm{X}}=\frac{(\mu-1) \mathrm{t}}{\lambda}$
$=\frac{(1.6-1) \times 18 \times 10^{-6}}{600 \times 10^{-9}}$
$=\frac{0.6 \times 18 \times 10^{3}}{600}=18$
29 (a)
$\frac{I_{1}}{I_{2}}=\frac{a_{1}^{2}}{a_{2}^{2}}=\frac{100}{1}$
$\therefore \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{10}{1} \Rightarrow \frac{\mathrm{a}_{1}+\mathrm{a}_{2}}{\mathrm{a}_{1}-\mathrm{a}_{2}}=\frac{11}{9}$
$\therefore \frac{I_{\text {max }}}{I_{\text {min }}}=\left(\frac{a_{1}+a_{2}}{a_{1}-a_{2}}\right)^{2}=\left(\frac{11}{9}\right)^{2}=\frac{121}{81}$
30 (d)
$\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{1}{25}$
$\therefore \frac{\mathrm{a}_{1}^{2}}{\mathrm{a}_{2}^{2}}=\frac{1}{25} \quad \ldots\left[\because \mathrm{I} \propto \mathrm{a}^{2}\right]$
$\therefore \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{1}{5}$
31 (b)
Common potential $=\frac{\mathrm{C}_{1} \mathrm{~V}_{1}+\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{C}_{\text {eff. }}}$
$=\frac{20 \times 10^{-6} \times 500+10 \times 10^{-6} \times 200}{20 \times 10^{-6}+10 \times 10^{-6}}$
$=\frac{12000}{30}=400 \mathrm{~V}$
(b)

The given network is a balanced Wheatstone bridge. It's equivalent resistance will be
$\mathrm{R}=\frac{18}{5} \Omega$
$\therefore \mathrm{i}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{\mathrm{V}}{18 / 5}=\frac{5 \mathrm{~V}}{18}$
$34 \quad$ (c)

Applying Kirchhoff's voltage law to ABCA,
$2-4 \mathrm{I}_{1}-4\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)=0$
Applying Kirchhoff's voltage law to ADCA, $2-2 \mathrm{I}_{2}-4\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)=0$
Subtracting equation (ii) from equation (i),
$-4 \mathrm{I}_{1}+2 \mathrm{I}_{2}=0$
$\therefore 2 \mathrm{I}_{2}=4 \mathrm{I}_{1} \Rightarrow \mathrm{I}_{2} / \mathrm{I}_{1}=2$
36
(d)
$\mathrm{S}=12 \Omega=\frac{\mathrm{G}}{\mathrm{n}-1}, \mathrm{n}=\frac{50}{10}=5$
$\therefore \mathrm{S}=\frac{\mathrm{G}}{\mathrm{n}-1}=\frac{\mathrm{G}}{5-1}=\frac{\mathrm{G}}{4}$
$\therefore \mathrm{G}=4 \mathrm{~S}=4 \times 12=48 \Omega$
(a)
$I=\frac{C \theta}{n A B}=\frac{5 \times 10^{-7} \times 45}{200 \times 0.02 \times 0.08 \times 0.2}$
$\therefore \mathrm{I}=3.5 \times 10^{-4} \mathrm{~A}$
41 (a)
$|e|=L \frac{d I}{d t} \Rightarrow L=e \cdot \frac{d t}{d I}$
$\mathrm{dI}=2-(-2)=4 \mathrm{~A}$
$\therefore \mathrm{L}=\frac{8 \times 0.05}{4}=0.1 \mathrm{H}$
42 (a)
$\tan \phi=\frac{\mathrm{X}_{\mathrm{C}}-\mathrm{X}_{\mathrm{L}}}{\mathrm{R}} \Rightarrow \tan 45^{\circ}=\left(\frac{\frac{1}{2 \pi \mathrm{fC}}-2 \pi \mathrm{fL}}{\mathrm{R}}\right)$
$\therefore \mathrm{C}=\frac{1}{2 \pi \mathrm{f}(2 \pi \mathrm{fL}+\mathrm{R})}$
44 (b)
$\lambda_{0}=\frac{\mathrm{c}}{\mathrm{v}_{0}}=\frac{3 \times 10^{8}}{5 \times 10^{14}}$
$=6 \times 10^{-7} \mathrm{~m}=6000 \AA$
46 (c)
$\mathrm{R}=\mathrm{R}_{0}(\mathrm{~A})^{1 / 3}$
$\therefore \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=\left(\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}\right)^{1 / 3}=\left(\frac{64}{27}\right)^{1 / 3}=\frac{4}{3}$
$\therefore \mathrm{R}_{2}=3.6 \times \frac{4}{3}=4.8$
$51 \quad$ (c)
In a closest Rock Salt structure, anion touches each other along the face diagonal of a cubic unit cell.
hence $4 r_{a}=\sqrt{2} a$ i. e. $r_{a}=\frac{a}{2 \sqrt{2}}$
58 (c)
$\frac{\mathrm{P}^{0}-\mathrm{P}}{\mathrm{P}^{0}}=\mathrm{X}_{\mathrm{B}}$
$\frac{5}{50}=X_{B}$

59 (b)
$\Delta H=\Delta U+\Delta n R T$
In the reaction $\mathrm{PCl}_{5(\mathrm{~g})} \rightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
$\Delta \mathrm{n}=(1+1)-1=1$
$\therefore \Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{RT} \quad \therefore \Delta \mathrm{H}>\Delta \mathrm{U}$
61 (c)
Reaction: $\frac{1}{2} \mathrm{H}_{2}+\frac{1}{2} \mathrm{Cl}_{2} \rightarrow \mathrm{HCl}$
$\Delta \mathrm{H}=\sum$ B.E. (Reactants) $-\sum$ B.E. (Products)
$\Delta \mathrm{H}=$ B.E. $(\mathrm{HCl})-\left[\frac{1}{2}\right.$ B. E. $(\mathrm{H} 2)+\frac{1}{2}$ B. E. $\left.\left(\mathrm{Cl}_{2}\right)\right]$
$\Delta \mathrm{H}=-103-\left[\frac{1}{2} \times(-104)+\frac{1}{2} \times(-58)\right]$

$$
=-103-(52-29)=-22 \mathrm{kcal}
$$

62 (b)
For $R_{2}, \Delta G$ should be negative and greater than positive value of ΔG for R_{1} in magnitude.
65 (c)
OH^{-}ions being negatively charged move towards positively charged anode during electrolysis.
74 (d)
Per chloric acid is HClO_{4}
77 (c)
From La to Lu , ionic radius decreases. Yb is the second last element of the $4^{\text {th }}$ series. Therefore $\mathrm{Yb}{ }^{+3}$ ion is the smallest ion.
87 (c)
Definition of ethers.
88 (c)
Clemmenson's reaction: $-\mathrm{C}=\mathrm{O} \xrightarrow{[\mathrm{H}]}-\mathrm{CH}_{2}$
101 (c)

p	q	$\sim \mathrm{q}$	p $\rightarrow \mathrm{q}$	$\sim(\mathrm{p}$ $\rightarrow \mathrm{q})$	$\mathrm{p} \wedge$ $\sim \mathrm{q}$	$\sim(\mathrm{p}$ $\rightarrow \mathrm{q})$ $\leftrightarrow(\mathrm{p} \wedge$ \sim
T	T	F	T	F	F	T
T	F	T	F	T	T	T
F	T	F	T	F	F	T
F	F	T	T	F	F	T

102 (c)

1	2	3	4	5	6
p	q	$\sim \mathrm{q}$	p $\leftrightarrow \mathrm{q}$	$\mathrm{p} \leftrightarrow$ $\sim \mathrm{q}$	$\sim(\mathrm{p}$ $\leftrightarrow \sim \mathrm{q})$
T	T	F	T	F	T
T	F	T	F	T	F
F	T	F	F	T	F
F	F	T	T	F	T

The entries in the columns 4 and 6 are identical $\therefore \sim(\mathrm{p} \leftrightarrow \sim \mathrm{q}) \equiv \mathrm{p} \leftrightarrow \mathrm{q}$
103 (b)
It is a property
106 (b)
Given, $B=-A^{-1} B A$
$\therefore A B=-A A^{-1} B A=-I B A=-B A$
$\therefore A B=-B A$
Now $(A+B)^{2}=(A+B)(A+B)$
$=A^{2}+A B+B A+B^{2}$
$=A^{2}+B^{2} \quad[\because B A=-A B]$
Thus, $(A+B)^{2}=A^{2}+B^{2}$
107 (a)
$\tan \left(\cos ^{-1} x\right)$
$=\tan \left[\tan ^{-1} \frac{\sqrt{1-x^{2}}}{x}\right]$
$\ldots . .\left[\because \cos ^{-1} x=\tan ^{-1} \frac{\sqrt{1-x^{2}}}{x}\right]$
$=\frac{\sqrt{1-x^{2}}}{x}$
108 (d)
$\cos \mathrm{C}=\frac{81+64-x^{2}}{2.9 .8} \Rightarrow \frac{2}{3}=\frac{145-x^{2}}{144}$
$\Rightarrow x^{2}=49 \Rightarrow x=7$
109 (c)
$\frac{\sin B \cos C}{\sin A}+\frac{\cos B \sin C}{\sin A}$
$=\left(\frac{\mathrm{b}}{\mathrm{a}} \cos \mathrm{C}+\frac{\mathrm{c}}{\mathrm{a}} \cos \mathrm{B}\right)$
$=1 \quad$....[By projection rule]
110 (a)
Comparing given equation with standard form,
$\mathrm{a}=1, \mathrm{~h}=-\frac{3}{2}, \mathrm{~b}=\lambda$,
$\theta=\tan ^{-1}\left(\frac{1}{3}\right) \Rightarrow \tan \theta=\frac{1}{3}$
Since, $\tan \theta=\frac{2 \sqrt{h^{2}-a b}}{a+b}$
$\therefore \frac{1}{3}=\frac{2 \sqrt{\left(\frac{-3}{2}\right)^{2}-\lambda}}{\lambda+1}$
$\therefore(\lambda+1)^{2}=9(9-4 \lambda)$
$\therefore \lambda^{2}+38 \lambda-80=0$
$\Rightarrow(\lambda+40)(\lambda-2)=0 \Rightarrow \lambda=2$
111 (b)
Here, $l=1, \mathrm{~m}=1, \mathrm{n}=-1$ and $\mathrm{a}=1, \mathrm{~b}=1, \mathrm{~h}=$ $0, \mathrm{~g}=-1, \mathrm{f}=0, \mathrm{c}=-1$
From the given curve and line, we get
$x^{2}+y^{2}-2 x(x+y)-(x+y)^{2}=0$
$\Rightarrow 2 x^{2}+4 x y=0$
$\Rightarrow x^{2}+2 x y=0$
$\therefore \tan \theta=\frac{2 \sqrt{\mathrm{~h}^{2}-\mathrm{ab}}}{\mathrm{a}+\mathrm{b}}$
$\therefore \tan \theta=\frac{2 \sqrt{1^{2}-0}}{1}$
$\Rightarrow \theta=\tan ^{-1}(2)$
112 (c)
Since, the lines are perpendicular,
$\therefore \mathrm{a}+\mathrm{b}=0 \Rightarrow \mathrm{k}_{1}=-1$
Putting $\mathrm{k}_{1}=-1$, we get the lines as
$x^{2}+0 . x y-y^{2}+0 . x+2 \mathrm{k}_{2} y-\mathrm{a}^{2}=0$
Since, $\mathrm{h}=0, \mathrm{~g}=0, \mathrm{c}=-\mathrm{a}^{2}$
We get $\mathrm{a}^{2}-\mathrm{k}_{2}^{2}=0 \Rightarrow \mathrm{k}_{2}=\mathrm{a},-\mathrm{a}$

113 (b)
Position vector of the line joining the given points which divides internally in the ratio $2: 3$ is
$\frac{3(2 \bar{a}-3 \bar{b})+2(3 \bar{a}-2 \bar{b})}{5}=\frac{12 \bar{a}-13 \bar{b}}{5}$
114 (c)
$\overline{\mathrm{a}} .(\overline{\mathrm{b}} \times \overline{\mathrm{c}})=0$ or $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{c}}=0$
115 (d)
$\overrightarrow{A B}=\lambda \overrightarrow{B C}$
Here, $\overrightarrow{A B}=-2 b, \overrightarrow{B C}=(k+1) b$
Hence $\forall k \in R \Rightarrow \overrightarrow{A B}=\lambda \overrightarrow{B C}$
116 (c)
Let $l, \mathrm{~m}, \mathrm{n}$ be the d.c.s of $\overline{\mathrm{r}}$
$\therefore l=\mathrm{m}=\mathrm{n}$
$\ldots .[\because \alpha=\beta=\gamma \Rightarrow \cos \alpha=\cos \beta=\cos \gamma]$
Now, $l^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=1$
$\Rightarrow l= \pm \frac{1}{\sqrt{3}}$
117 (d)
$\cos \theta=\frac{1}{\sqrt{2}}=\left|\frac{2 \mathrm{a}-3+10}{\sqrt{2^{2}+(-1)^{2}+2^{2}} \sqrt{\mathrm{a}^{2}+3^{2}+5^{2}}}\right|$
$\Rightarrow 9\left(a^{2}+34\right)=2(2 a+7)^{2}=2\left(4 a^{2}+28 a+49\right)$
$\Rightarrow a^{2}-56 a+208=0 \Rightarrow a=4$
118 (d)
$\cos \gamma=\sqrt{1-\frac{3}{4}-\frac{1}{2}}=\sqrt{\frac{-1}{4}}$ which is not possible
119 (c)
Let M be the foot of perpendicular drawn from the point $\mathrm{P}(1,2,3)$ to the line
$\frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}=\lambda$
Coordinates of any point on the line is
$\therefore \mathrm{M} \equiv(6+3 \lambda, 7+2 \lambda, 7-2 \lambda)$
Direction ratios of PM are
$6+3 \lambda-1,7+2 \lambda-2,7-2 \lambda-3$
i.e., $5+3 \lambda, 5+2 \lambda, 4-2 \lambda$

Direction ratios of the given line are ($3,2,-2$)
Since, PM is perpendicular to the given line
$\therefore 3(5+3 \lambda)+2(5+2 \lambda)-2(4-2 \lambda)=0$
$\Rightarrow 15+9 \lambda+10+4 \lambda-8+4 \lambda=0$
$\Rightarrow 17 \lambda+17=0$
$\Rightarrow \lambda=-1$
$\therefore \mathrm{M} \equiv(3,5,9)$
$\therefore \mathrm{PM}=\sqrt{(3-1)^{2}+(5-2)^{2}+(9-3)^{2}}$
$=\sqrt{4+9+36}$
$=7$
120 (b)
Equation of any line passing through the point whose position vector is a and is parallel to the b is $\bar{r}=\bar{a}+\lambda \bar{b}$ where λ is a parameter
\therefore Required equation is
$\overline{\mathrm{r}}=2 \hat{\imath}-3 \hat{\jmath}+4 \widehat{\mathrm{k}}+\lambda(3 \hat{\imath}+4 \hat{\jmath}-5 \hat{\mathrm{k}})$
This is a line passing through $(2,-3,4)$ and whose direction cosines are proportional to ($3,4,-5$). So the Cartesian equation of the line is $\frac{x-2}{3}=\frac{y+3}{4}=$ $\frac{z-4}{-5}$
$\therefore 4 x-8=3 y+9$ and $-5 y-15=4 z-16$
i.e., $4 x-3 y=17$ and $5 y+4 z=1$

121 (c)
The lines can be rewritten as
$\bar{r}=(\hat{\imath}-2 \hat{\jmath}+3 \hat{k})+t(-\hat{\imath}+\hat{\jmath}-\hat{k})$ and
$\overline{\mathrm{r}}=(\hat{\imath}-\hat{\jmath}-\hat{\mathrm{k}})+\mathrm{s}(\hat{\mathrm{\imath}}+2 \hat{\jmath}-2 \hat{\mathrm{k}})$
$\mathrm{d}=\frac{\left|\begin{array}{ccc}1-1 & -1+2 & -1-3 \\ -1 & 1 & -1 \\ 1 & 2 & -2\end{array}\right|}{\sqrt{(-2+2)^{2}+(-1-2)^{2}+(-2-1)^{2}}}$
$=\frac{\left|\begin{array}{ccc}0 & 1 & -4 \\ -1 & 1 & -1 \\ 1 & 2 & -2\end{array}\right|}{\sqrt{9}+9}$
$=\frac{|0-1(3)-4(-3)|}{3 \sqrt{2}}$
$=\frac{9}{3 \sqrt{2}}=\frac{3}{\sqrt{2}}$
122 (c)
The equation of the required plane is
$(2 x-5 y+z-3)+\lambda(x+y+4 z-5)=0$
$\therefore(2+\lambda) x+(-5+\lambda) y+(1+4 \lambda) z+(-3-5 \lambda)$ $=0$
Since, this plane is parallel to $x+3 y+6 z=1$
$\therefore \frac{2+\lambda}{1}=\frac{-5+\lambda}{3}=\frac{1+4 \lambda}{6}$
By solving, we get
$\lambda=-\frac{11}{2}$
Putting $\lambda=-\frac{11}{2}$ in (i), we get
$(2 x-5 y+z-3)-\frac{11}{2}(x+y+4 z-5)=0$
$\Rightarrow-7 x-21 y-42 z+49=0$
$\Rightarrow x+3 y+6 z-7=0$
123 (c)

$$
\begin{aligned}
& \sin \theta=\frac{(2)(3)+(-2)(4)+(1)(5)}{\sqrt{2^{2}+(-2)^{2}+(1)^{2}} \cdot \sqrt{3^{2}+4^{2}+5^{2}}} \\
& =\frac{3}{\sqrt{9} \sqrt{50}}=\frac{1}{5 \sqrt{2}}=\frac{\sqrt{2}}{10}
\end{aligned}
$$

126 (b)
$\lim _{x \rightarrow 1^{-}} \mathrm{f}(x)=\lim _{x \rightarrow 1^{+}} \mathrm{f}(x)$
$\therefore 2=\lim _{x \rightarrow 1^{+}}(c-2 x)$
$\therefore 2=\mathrm{c}-2$
$\therefore \mathrm{c}=4$
127 (c)
$\lim _{x \rightarrow 1^{+}} \mathrm{f}(x)=0$ and $\lim _{x \rightarrow 1^{-}} \mathrm{f}(x)=1+1=2$
Hence, $\mathrm{f}(x)$ is discontinuous at $x=1$
128 (c)
As $\frac{|x|}{x}$ is discontinuous at $x=0$
$\therefore \frac{|3 x-4|}{3 x-4}$ is discontinuous at $3 x-4=0$
$\therefore x=\frac{4}{3}$
129 (d)
$y=\tan ^{-1}\left[\frac{\log \mathrm{e} x}{\log \frac{\mathrm{e}}{x}}\right]+\tan ^{-1}\left[\frac{8-\log x}{1+8 \log x}\right]$
$=\tan ^{-1}\left[\frac{1+\log x}{1-\log x}\right]+\tan ^{-1}\left[\frac{8-\log x}{1+8 \log x}\right]$
$\therefore y=\tan ^{-1} 1+\tan ^{-1}(\log x)+\tan ^{-1} 8$ $-\tan ^{-1}(\log x)$
$\therefore y=\tan ^{-1} 1+\tan ^{-1} 8$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=0, \quad \therefore \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=0$
130 (c)
Let $x=\sin \mathrm{t} \cos 2 \mathrm{t}$
and $y=\cos t \sin 2 t$
differentiable (i) w.r.t. t, we get
$\frac{\mathrm{d} x}{\mathrm{dt}}=\cos \mathrm{t} \cos 2 \mathrm{t}-2 \sin \mathrm{t} \sin 2 \mathrm{t}$
Differentiate (ii), w.r.t. t, we get
$\frac{\mathrm{d} y}{\mathrm{dt}}=2 \cos \mathrm{t} \cos 2 \mathrm{t}-\sin \mathrm{t} \sin 2 \mathrm{t}$
\therefore Dividing equation (iv) by (iii), we get
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 \cos \mathrm{t} \cos 2 \mathrm{t}-\sin \mathrm{t} \sin 2 \mathrm{t}}{\cos \mathrm{t} \cos 2 \mathrm{t}-2 \sin \mathrm{t} \sin 2 \mathrm{t}}$
At $\mathrm{t}=\frac{\pi}{4}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{2}$
131 (a)
$x=\operatorname{acos}^{3} \theta$
$\therefore \frac{\mathrm{d} x}{\mathrm{~d} \theta}=-3 \cos ^{2} \theta \cdot \sin \theta$
$y=a \sin ^{3} \theta$
$\therefore \frac{\mathrm{d} y}{\mathrm{~d} \theta}=3 \mathrm{a} \sin ^{2} \theta \cdot \cos \theta$

$$
\begin{aligned}
\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}=-\tan \theta & \therefore \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}}+\sqrt{1+\tan ^{2} \theta} \\
& =\sqrt{\sec ^{2} \theta}=|\sec \theta|
\end{aligned}
$$

132 (c)
Given that $s=2 t^{2}-3 t+1$
$\therefore \frac{\mathrm{ds}}{\mathrm{dt}}-4 \mathrm{t}-3$ (velocity),
$\therefore \frac{\mathrm{d}^{2} \mathrm{~s}}{\mathrm{dt}^{2}}=4$
133 (b)
$\frac{\mathrm{d} x}{\mathrm{dt}}=0.5 \mathrm{~cm} / \mathrm{sec}$

\therefore Area $=\frac{x^{2}}{2}$
$\therefore \frac{\mathrm{dA}}{\mathrm{dt}}=\frac{2 x}{2} \cdot \frac{\mathrm{~d} x}{\mathrm{dt}}$
$\therefore\left[\frac{\mathrm{dA}}{\mathrm{dt}}\right]_{\mathrm{A}=400}=\frac{1}{2} \sqrt{800} \quad \ldots\left[\begin{array}{l}\because \mathrm{A}=400 \mathrm{~cm}^{2} \\ \therefore x=\sqrt{800} \mathrm{~cm}\end{array}\right]$
$=10 \sqrt{2} \mathrm{~cm}^{2} / \mathrm{sec}$
135 (b)
$\int\left[\frac{1}{\log x}-\frac{1}{(\log x)^{2}}\right] \mathrm{d} x$
$=\int \frac{1}{\log x} \mathrm{~d} x-\int \frac{1}{(\log x)^{2}} \mathrm{~d} x$
$=\frac{x}{\log x}+\int \frac{1}{(\log x)^{2}} \cdot \frac{1}{x} x \mathrm{~d} x-\int \frac{1}{(\log x)^{2}} \mathrm{~d} x$
$=\frac{x}{\log x}+c$
137 (b)
$\int \frac{1}{(x-5)^{2}} \mathrm{~d} x=\frac{(x-5)^{-2+1}}{-2+1}+c$
$=\frac{(x-5)^{-1}}{-1}+c=-\frac{1}{(x-5)}+c$
138 (b)
It is a fundamental property
139 (d)
$\pi / 6$
$\int_{0}^{\pi}\left(2+3 x^{2}\right) \cos 3 x \mathrm{~d} x$
$=\left[\frac{\sin 3 x}{3}\left(2+3 x^{2}\right)\right]_{0}^{\frac{\pi}{6}}-\int_{0}^{\pi / 6} \frac{\sin 3 x}{3} \cdot 6 x \mathrm{~d} x$ $=\frac{1}{36}\left(\pi^{2}+16\right)$
140 (c)
$I=\int_{0}^{\pi / 2} \frac{(\sin x+\cos x)^{2}}{\sqrt{1+\sin 2 x}} d x$
$=\int_{0}^{\pi / 2} \frac{(\sin x+\cos x)^{2}}{\sqrt{(\sin x+\cos x)^{2}}} \mathrm{~d} x$
$=\int_{0}^{\pi / 2}(\sin x+\cos x) \mathrm{d} x=[-\cos x+\sin x]_{0}^{\pi / 2}$
$=\mathrm{I}-(-1)=2$
141 (d)
$\mathrm{A}_{1}=\int_{0}^{\pi / 3} \cos x \mathrm{~d} x=\frac{\sqrt{3}}{2}$
$A_{2}=\int_{0}^{\pi / 3} \cos 2 x d x=\frac{\sqrt{3}}{4}$
$\therefore \mathrm{A}_{1}: \mathrm{A}_{2}=2: 1$
142 (a)
$2 x^{2}=x^{2}+4$
$\therefore x^{2}=4 \Rightarrow x= \pm 2$
\therefore Required area $=\int_{-2}^{2}\left(x^{2}+4-2 x^{2}\right) \mathrm{d} x$
$=\int_{-2}^{2}\left(4-x^{2}\right) \mathrm{d} x=\left[4 x-\frac{x^{3}}{3}\right]_{-2}^{2}$
$=\left(8-\frac{8}{3}\right)-\left(-8+\frac{8}{3}\right)=\frac{32}{3}$
143 (d)

Required area $=2 \int_{1}^{2}\left(-x^{2}+3 x-2\right) \mathrm{d} x$
$=2\left[\frac{-x^{3}}{3}+\frac{3 x^{2}}{2}-2 x\right]_{1}^{2}$
$=2\left(\frac{-8}{3}+6-4+\frac{1}{3}-\frac{3}{2}+2\right)$
$=\frac{1}{3}$ sq. units
144 (a)
$\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)^{1 / 3}+\left(x+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{1 / 2}=0$
$\Rightarrow\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)^{1 / 3}=-\left(x+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{1 / 2}$
$\Rightarrow\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right)^{2}=\left(x+\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{3}$
\therefore Order $=2$, degree $=2$

145 (b)
$x \mathrm{~d} y=y(\mathrm{~d} x+y \mathrm{~d} y)$
$\Rightarrow \frac{x \mathrm{~d} y-y \mathrm{~d} x}{y^{2}}=\mathrm{d} y$
$\Rightarrow-\mathrm{d}\left(\frac{x}{y}\right)=\mathrm{d} y$
On integrating both sides, we get $\frac{x}{y}+y=\mathrm{c}$
Since, $y(1)=1 \Rightarrow c=2$
$\therefore \frac{x}{y}+y=2$
For $x=-3$,
$y^{2}-2 y-3=0$
$\Rightarrow y=-1$ or $3 \Rightarrow y=3$
148 (c)
Since, $\mathrm{f}(x)$ is the p.d.f. of X
$\therefore \int_{-\infty}^{\infty} \mathrm{f}(x) \mathrm{d} x=1$
$\therefore \int_{0}^{\infty} \mathrm{K} . \mathrm{e}^{-\theta x} \mathrm{~d} x-1$
$\therefore \mathrm{K}\left[\frac{\mathrm{e}^{-\theta x}}{-\theta}\right]_{0}^{\infty}=1$
$\Rightarrow-\frac{\mathrm{K}}{\theta}\left[\frac{1}{\mathrm{e}^{\theta x}}\right]_{0}^{\infty}=1$
$\Rightarrow-\frac{\mathrm{K}}{\theta}\left[\frac{1}{\mathrm{e}^{\infty}}-\frac{1}{\mathrm{e}^{0}}\right]=1$
$\Rightarrow-\frac{\mathrm{K}}{\theta}\left[\frac{1}{\infty}-\frac{1}{1}\right]=1 \Rightarrow \frac{\mathrm{~K}}{\theta}=1 \Rightarrow \mathrm{~K}=\theta$

