NEET - PHYSICS

1.	$\it R$ and $\it L$ represent respectively resistance and self inductance, which of the following combinations has the dimensions of frequency							
	a) _R	b)	L	c)	\overline{R}	d)	\overline{L}	
	$\frac{L}{L}$		$\frac{L}{R}$		$\sqrt{\frac{R}{L}}$		$\sqrt{\frac{L}{R}}$	
2.	The unit of se	elf inductance of	a coil is		V		V	
2.	a) Farad	b)	Henry	c)	Weber	d)	Tesla	
3.	-	(x) of a particle	-	•		- /		
	$x = at + bt^2 - ct^3$							
	Where a , b and c are constants of the motion. The velocity of the particle when its acceleration is zero							
	is given by				2			
	a) $a + \frac{b^2}{a}$			b)	$a+\frac{b^2}{a}$			
	a) $a + \frac{b^2}{c}$ c) $a + \frac{b^2}{3c}$				$a + \frac{b^2}{2c}$ $a + \frac{b^2}{4c}$			
	c) $a + \frac{b}{3c}$			d)	$a + \frac{b}{4c}$			
4.	A large numb	er of bullets are	fired in all di	rections with	າ same speed <i>ເ</i>	. What is th	e maximum	area
	_	d on which these						
	a) $\pi \frac{v^2}{g}$	b)	$\frac{v^4}{\pi}$	c)	$\pi^2 \frac{v^4}{g^2}$	d)	$\pi^2 \frac{v^2}{}$	
	•		0		0		U	
5.	The relation between the time of flight of a projectile T_f and the time to reach the maximum height							
	t_m is			1.3	T 4			
	a) $T_f = 2t_m$	1		DJ	$T_f = t_m$ $T_f = \sqrt{2}(t_m)$			
	c) $T_f = \frac{t_m}{2}$			d)	$T_f = \sqrt{2}(t_m)$)		
6.	A person of mass $60\ kg$ is inside a lift of mass $940\ kg$ and presses the button one control panel. The							el. The
	lift starts moving upwards with an acceleration 1.0 m/s^2 . If $g = 10 ms^{-2}$, the tension in the							
	supporting ca		0.600 N	,	0.600 N	15	11000 N	
7.	a) 1200 <i>N</i>	,	8600 N	c)	9680 N	d)	11000 N	oga bo
/.	A player caught a cricket ball of mass 150 g moving at the rate of 20 ms ⁻¹ . If the catching process be completed in 0.1 s, the force of blow exerted by the ball on the hands of the player is							
	a) 0.3 N	b)	30 N	cu by the bar c)	300 N	d)	3000 N	
8.	,	oving with veloc		•		•		eutron
	after the colli						-	
	a) $-\frac{3v}{}$	b)	3v	c)	$\frac{2v}{}$	d)	$-\frac{2v}{}$	
0	5 Two balls and	h of mass ano	5 placed on the	wantiasa 1 a	5 nd Dofon cou	منعا لمعمان	5	id.
9.	Two balls each of mass m are placed on the vertices A and B of an equilateral triangle ABC of side 1m. A ball of mass $2m$ is placed at vertex C . The centre of mass of this system from vertex A (located							
	at origin) is	11433 2111 13 place	u at vertex o.	The centre (71 111033 01 11113	system nor	ii vertex ii (ie	catea
	C • m							
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
	1 m							
	1	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\						
	$m \angle$							
	A 1 m	$B \xrightarrow{m}$						
	a) $\left(\frac{1}{2}m, \frac{1}{2}m\right)$	1)		b)	$\left(\frac{1}{2}\text{m}, \sqrt{3}\text{ m}\right)$			
	(2 / 2	J		,	(2 /)			

	c) $\left(\frac{1}{2}m, \frac{\sqrt{3}}{4}m\right)$	d)	$\left(\frac{\sqrt{3}}{4}\text{m}, \frac{\sqrt{3}}{4}\text{m}\right)$			
10.	A solid cylinder of mass 2 kg and radius 0.2 m is angular velocity of 3 rad s ⁻¹ . Angular moment of			is with	out friction with	
	a) 0.2 J-s b) 1.12 J-s	c)	0.12 J-s	d)	12 J-s	
11.	The angular velocity of rotation of star (of mass a from its equator will be		-	the m	atter start to escape	
	a) $\sqrt{\frac{2GM^2}{R}}$ b) $\sqrt{\frac{2GM}{g}}$	c)	$\frac{2GM}{R^3}$	d)	$\frac{2GR}{M}$	
	V		N		V	
12.	Forces of 100 N each are applied in opposite directions on the upper and lower faces of a cube of side 20 cm. The upper face is shifted parallel to itself by 0.25 cm. If the side of the cube were 10 cm, then the displacement would be					
	a) 0.25 cm b) 0.5 cm	c)	0.75 cm	d)	1 cm	
13.	Two solids A and B float in water. It is observed	that A	floats with $\frac{1}{2}$ of its b	ody ir	nmersed in water	
	and B floats with $\frac{1}{4}$ of its volume above the water					
	a) 4:3 b) 2:3	c)	3:4	d)	1:2	
14.	Two very wide parallel glass plates are held vert	-	-		= =	
	surface tension <i>S</i> . Some water climbs up in the ga	-		•	-	
	pressure, then the pressure of water just below t	he wa	ter surface in the re	egion b	etween the two	
	plates is					
	a) $p_0 - \frac{2S}{r}$ b) $p_0 + \frac{2S}{r}$	c)	$p_0 - \frac{4 S}{}$	d)	$p_0 + \frac{4S}{r}$	
15.	On the Celsius scale the absolute zero of tempera		1		r	
15.	a) 0°C	b)	−32°C			
	c) 100°C	d)	−273.15°C			
16.	First law of thermodynamics is given by	u)	273.13 G			
10.	a) $dQ = dU + PdV$	h)	$dQ = dU \times PdV$			
	c) $dQ = (dU + dV)P$	d)	dQ = PdU + dV			
17.	Four engines are working between the given tem	,	•	elow. I	For which	
17.	temperature range the efficiency is maximum	perace	ares ranges given by		or winen	
	a) 100 K, 80 K	b)	40 K, 20 K			
	c) 60 K, 40 K	d)	120 K, 100 K			
18.	One litre of oxygen at a pressure of 1 atm and	-		at a n	ressure of 0.5 atm	
			-	_		
	are introduced into a vessel of volume 1 L. If there is no change in temperature, the final pressure of the mixture of gas (in atm) is					
		c)	2	d)	1	
10				,	4 - CHM	
19.	Out of the following functions representing motion	on or a	particle which repr	esent	S ЭПМ	
	$(1) y = \sin \omega t - \cos \omega t (2) y = \sin^3 \omega t$,				
	(3) $y = 5\cos\left(\frac{3\pi}{4} - 3\omega t\right)$ (4) $y = 1 + \omega t + \omega^2 t^2$	2				
	a) Only (1) and (2)					
	b) Only (1)					
	c) Only (4) does not represent SHM					
	d) Only (1) and (3)					
If the displacement equation of a particle be represented by $y = A \sin PT + B \cos PT$, the particle be represented by $y = A \sin PT + B \cos PT$, the particle be represented by $y = A \sin PT + B \cos PT$, the particle be represented by $y = A \sin PT + B \cos PT$, the particle be represented by $y = A \sin PT + B \cos PT$.						
	executes					
	a) A uniform circular motion					
	b) A uniform elliptical motion					

A S.H.M.

c)

d)	A rectilinear	motion
uı	Altumear	mouoi

The fundamental frequency of a sonameter wire is v. if its radius is doubled and its tension becomes 21. half, the material of the wire remains same, the new fundamental frequency will be

a)

2

22. Let E_a be the electric field due to a dipole in its axial plane distant l and let E_q be the field in the equatorial plane distant l', then the relation between E_a and E_q will be

a) $E_a = 4E_a$

c) $E_a = 2E_a$

 $E_a = 3E_a$ d)

23. Six charges, three positive and three negative of equal magnitude are to be placed at the vertices of a regular hexagon such that the electric field at O is double the electric field when only one positive charge of same magnitude is placed at R. Which of the following arrangements of charges is possible for P, Q, R, S, T and U respectively?

+, -, +, -, -, +

+, +, -, +, -, -

An air parallel plate capacitor has capacity C. The capacity and distance between plates are doubled 24. when immersed in a liquid then dielectric constant of the liquid is

a)

- b) 2
- c) 3
- d)
- In the given circuit, with steady current, the potential drop across the capacitor must be 25.

a)

- b) V/2
- V/3
- 2V/3
- Two batteries of e.m.f. 4 V and 8 V with internal resistances 1 Ω and 2 Ω are connected in a circuit 26. with a resistance of 9 Ω as shown in figure. The current and potential difference between the points P and Q are

 $\frac{1}{3}A$ and 3V

 $\frac{1}{6}A$ and 9V

27. To verify Ohm's law, a student is provided with a test resistor R_T , a high resistance R_1 , a small resistance R_2 , two identical galvanometers G_1 and G_2 and a variable voltage source V. the correct circuit to carry out the experiment is

	a) 150 <i>cm</i>	b) 60 <i>cm</i>	c)	30 cm	d)	40 cm	
36.	The wavelength of light diminishes μ times ($\mu = 1.33$ for water) in a medium. A diver from inside water looks at an object whose natural colour is green. He sees the object as						
	a) Green	b) Blue	c)	Yellow	d)	Red	
37.	In Young's double slit experiment intensity at a point is $(1/4)$ of the maximum intensity. Angular position of this point is						
	a) $\sin^{-1}(\lambda/d)$ c) $\sin^{-1}(\lambda/3d)$		b) d)	$\sin^{-1}(\lambda/2d)$ $\sin^{-1}(\lambda/4d)$			
38.	, , ,	experiment, a charged d	,	` ' '	ocity V. i	f an electric fie	eld <i>E</i>
	is applied in verticall	y upward direction then ude of electric field is de	it starts r	noving in upware	d directi	on with termin	al
	a) V/2	b) <i>V</i>	c)	3V/2	d)	2V	
39.		es at a frequency of 1 <i>GH</i>	,	,			
	a) X-rays	1 ,	b)	Mirowaves			
	c) Infrared rays		d)	None of these			
40.	The acceleration of e	ectron in the first orbit o	of hydrog	en atom is			
	a) $4\pi^2 m$		c)		d)	m^2h^2	
	${h^3}$	b) $\frac{h^2}{4\pi^2 mr}$		$\frac{h^2}{4\pi^2m^2r^3}$		$\frac{m^2h^2}{4\pi^2r^3}$	
41.	A radio-isotope has a half-life of 5 <i>years</i> . The fraction of the atoms of this material that would decay in 15 <i>years</i> will be						
	a) 1/8	b) 2/3	c)	7/8	d)	5/8	
42.	Bohr's atom model as	, ,	C)	770	u)	3/0	
42.		infinite mass and is at r	act				
	•			cov			
	b) Electrons in a quantized orbit will not radiate energyc) Mass of electron remains constant						
	d) All the above cor						
43.			utnut volt	age V. is			
тэ.	In the circuit shown in figure the maximum output voltage V_0 is						
	10 V T/2	$ \begin{array}{c} D_1 \\ 2k\Omega \end{array} $ $ \begin{array}{c} V_0 \\ V_0 \end{array} $ $ \begin{array}{c} V_1 \\ V_0 \end{array} $ $ \begin{array}{c} V_1 \\ V_0 \end{array} $					
	a) 0 <i>V</i>	b) 5 V	c)	10 <i>V</i>	d)	$\frac{5}{\sqrt{2}}V$	
44.	A photodetector is m	ade from a semiconducto	or with E_{g}	$_{0} = 0.73 eV. \text{Wha}$	t is the r	naximum	
	wavelength, which it						
	a) 1000 nm	b) 1703 nm	c)	500 nm	d)	173 nm	
45.		equency at which electr	omagneti	c wave must be p	ropagat	ed for the D-re	gion

of atmosphere to have a refractive index of 0.5. Electron density for D-region is 400 electrons/cc

b)

d)

104.2 kHz

312.6 kHz

200 kHz

208.4 kHz

a)

c)