
MERITSTORE

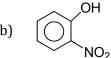
NEET - CHEMISTRY

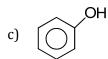
45.	What is the value of frequency at which electromagnetic wave must be propagated for the D-region of atmosphere to have a refractive index of 0.5. Electron density for D-region is 400 electrons/cc										
	a) 200 kHz	b)	104.2 kHz								
	c) 208.4 kHz	d)	312.6 kHz								
46.	In which of the following numbers all zeros	,									
40.	a) 0.500 b) 30.000	c)	0.00030	d)	0.0050						
47.		•		,							
47.	An organic compound contains 49.3% carbon, 6.84% hydrogen and its vapour density is 73. Molecular formula of the compound is										
	a) $C_3H_5O_2$ b) $C_4H_{10}O_2$	c)	$C_6H_{10}O_4$	d)	$C_3H_{10}O_2$						
48.	The number of orbitals present in the shell	-		u)	03111002						
	a) 8 b) 16	c)	18	d)	32						
49.	An orbital in which $n = 4$ and $l = 2$ is expressed by										
	a) 4s b) 4p	c)	•	d)	5 <i>p</i>						
50.	Fluorine has low electron affinity than chlorine because of										
	a) Bigger radius of fluorine, less density										
	b) Smaller radius of fluorine, high density										
	c) Smaller radius of chlorine, high density										
	d) Smaller radius of chlorine, less density										
51.	The bond length of HCl molecule is 1.275 Å and its dipole moment is 1.03 D. The ionic										
	character of the molecule (in per cent) (charge of the electron= 4.8×10^{-10} esu) is										
	a) 100	b)	67.3								
	c) 33.66	d)	16.83								
52.	sp^3d hybridisation results in										
	a) A square planar molecule	b)	An octahedron molecule								
	c) A trigonal bipyramidal molecule	d)	A tetrahedron r	nolec	ule						
53.	Gas CO CH ₄ HCl S	0_2									
	Critical temp, $T_c(K)$ 134 190 324 4	30									
	In the context of given values of critical temperature, the greater ease of liquefication										
	a) SO ₂ b) HCl	c)	CH_4	d)	CO						
54.	2 moles of an ideal gas expanded isothermally and reversibly from 1 L to 10 L at										
	300 K. What is the enthalpy change?										
	a) 4.98 kJ	b)	11.47 kJ								
	c) -11.47 kJ	d)	0 kJ								
55.	A schematic plot of $\ln K_{eq}$ versus invers	e of te	emperature for	a rea	ction is shown						
	below										

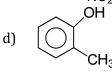
The reaction must be

- a) Highly spontaneous at ordinary temperature
- b) One with negligible enthalpy change
- c) Endothermic
- d) Exothermic
- 56. In qualitative analysis, in order to detect second group basic redical, H₂S gas is passed in the presence of dilute HCl to
 - a) Increase the dissociation of H₂S
 - b) Decrease the dissociation of salt solution
 - c) Decrease the dissociation of H₂S
 - d) Increase the dissociation of salt solution
- 57. Oxidation states of X, Y, Z are +2, +5 and -2 respectively. Formula of the compound formed by these wii be
 - a) X_2YZ_6
- b) XY_2Z_6
- c) XY_5
- d) X_3YZ_4
- 58. Oxidation state of sulphur in $Na_2S_2O_3$ and $Na_2S_4O_6$
 - a) 4 and 6

b) 3 and 5


c) 2 and 2.5


- d) 6 and 6
- 59. In which of the following reactions, H_2O_2 behaves as a reducing agent?
 - a) $Na_2SO_3(aq) + H_2O_2(aq) \rightarrow Na_2SO_4(aq) + H_2O(l)$
 - b) $PbO_2(s) + H_2O_2(aq) \rightarrow PbO(s) + H_2O(l) + O_2(g)$
 - c) $2KI(aq) + H_2O_2(aq) \rightarrow 2KOH(aq) + I_2(s)$
 - d) $KNO_2(aq) + H_2O_2(aq) \rightarrow KNO_3(aq) + H_2O(l)$
- 60. Which is not true in respect of berryllium chemistry?
 - a) Beryllium is amphoteric
 - b) It forms unusual carbide Be₂C
 - c) $Be(OH)_2$ is basic
 - d) Beryllium halides are electron deficient
- 61. Which is true for an element *R* present in III group of the periodic table?
 - a) It has oxidation state of +4
 - b) It is gas at room temperature
 - c) It forms R_2O_3
 - d) It forms RX_2
- 62. The correct order of increasing atomic radii, is
 - a) B < Al < Ga


b) Ga < Al < B

٠,		A 1	_	ъ	_	~
c)) .	ΑI	<	В	<	Gc

- d) B < Ga < Al
- 63. Which one of the following compound is most acidic?
 - a) $Cl CH_2 CH_2 OH$

- 64. On mixing a certain alkane with chlorine and irradiating it with UV light, it form one monochloro alkane. The alkane could be
 - a) Neopentane

b) Propane

c) Pentane

- d) Isopentane
- 65. Which of the following compounds is not aromatic?

- 66. Photochemical smog is caused by
 - a) CO
- b) CO₂
- c) 0_3
- d) NO_2
- 67. A solid compound contains *X*, *Y* and *Z* atoms in a cubic lattice with *X* atom occupying the corners. *Y* atoms in the body centred positions and *Z* atoms at the centres of faces of the unit cell. What is the empirical formula of the compound?
 - a) XY_2Z_3
- b) XYZ_3
- c) $X_2Y_2Z_3$
- d) X_8YZ_6
- 68. For a crystal system a = b = c and $\alpha = \beta = \gamma \neq 90^{\circ}$
 - a) Tetragonal

b) Hexagonal

c) Rhombohedral

- d) Monoclinic
- 69. What happens when an egg is kept in saturated solution of NaCl after removing its hard shell in dilHCl?
 - a) Egg will swell
 - b) Egg will shrink
 - c) Egg will remain same
 - d) Egg will first shrink and then swell
- 70. On mixing, heptane and octane form an ideal solution. At 373 K, the vapour pressures of the two liquid components (heptanes and octane) are 105 kPa and 45kPa respectively. Vapour pressure of the solution obtained by mixing 25 g of heptanes and 35 g of octane will be (molar mass of heptanes = 100 g mol^{-1} and of octane = 114 gmol^{-1}).
 - a) 72.0 kPa

b) 36.1 kPa

c) 96.2 kPa

- d) 144.5 kPa
- 71. The standard reduction potential for the half-cell having reaction

	NO	$O_3^-(aq) + 2H^+(aq)$) + e ⁻	$\rightarrow NO_2(g) +$	H ₂ O			
	Is (0.78 V. What will	be the	reduction po	otential of	the half-cell i	s a neutra	ıl solution?
	a)	0.78 V	b)	0.89 V	c)	0.36 V	d)	0.59 V
72.	Wh	nich of these does	not inf	luence the ra	ate of react	tion?		
	a)	Nature of the re	actant	S				
	b)	Concentration o	f the r	eactants				
	c)	Temperature of	the re	action				
	d)	Molecularity of	the rea	ction				
73.	Cor	nsider the reaction	n 2 <i>A</i> +	$B \rightarrow produc$	ct			
	Wh	ien concentration	of B al	one was dou	ibled, the h	alf-life did no	ot change.	When the
	con	ncentration of A al	lone w	as doubled, t	he rate inc	reased by tw	o times. T	he unit of rate
	con	nstant for this read	ction is	5				
	a)	$Lmol^{-1}s^{-1}$			b)	No unit		
	c)	$molL^{-1}s^{-1}$			d)	s^{-1}		
74.	Ass	sociated colloid a	mong t	the following	is			
	a)	Enzyme	b)	Proteins	c)	Cellulose	d)	Sodium stearate
75.	Flu	x is used to remov	ve					
	a)	Acidic impuritie	es.					
	b)	Basic impurities	S					
	c)	All impurities fr	om ore	es				
	d)	From ores						
76.	Wh	nich one of the foll	lowing	is correct?				
	a)	All minerals are	ores					
	b)	All ores cannot l	be a mi	ineral				
	c)	A mineral canno	ot be ar	ı ore				
	d)	All ores are min	erals					
77.	Th	e last orbit of argo	on wou	ıld have elec	trons			
	a)	2	b)	6	c)	8	d)	18
78.	Th	e atomic numbers	s of vai	nadium (V), o	chromium	(Cr), mangan	iese(Mn),	and iron (Fe) are
	res	spectively 23, 24,	25 and	l 26 . Which o	one of thes	e may be exp	ected to h	nave the highest
	sec	cond ionisation er	ıthalpy	7?				
	a)	V	b)	Cr	c)	Mn	d)	Fe
79.	Kno	owing that the ch	emistr	y of lanthano	oids (Ln) is	dominated b	y its $+3$ c	oxidation state,
	wh	ich of the followir	ng state	ements is inc	correct?			
	a)	Because of the la	arge si	ze of the Ln ((III) ions th	ne bonding in	its comp	ounds is
		predominantly i	ionic ir	ı character.				
	b)	The ionic sizes of	of Ln (I	II) decrease	in general	with increasi	ng atomi	c number.
	c)	Ln (III) compou	nds ar	e generally c	olourless.			
	d)	Ln(III) hydroxid	de are i	mainly basic	in characte	er.		
80.	Th	e oxidation numb	er of F	e in K ₄ [Fe(C	N) ₆]is			
	a)	+3	b)	+4	c)	+2	d)	-2
81.	Wł	hich one of the iso	mers o	of cyclohexar	ne hexachl	oride is stron	g pesticid	e?

	-)		L	0	-)		77	2			
82.	a)	α as reagant is	b)	β	c)	γ	d)	δ			
02.	Lucas reagent is Aphydraus AlCl with concentrated HCl										
	 a) Anhydrous AlCl₃with concentrated HCl b) Anhydrous ZnCl₂and concentrated H₂SO₄ 										
	c) Anhydrous ZnCl ₂ and concentrated HCl										
	d)										
83. Tertiary alcohols (3°) having at least four carbon atoms upon drastic oxidation yie											
	carboxylic acid with										
a) One carbon atom less											
	b)	Two carbon atoms	s less								
	c) Three carbon atoms less										
	d) All the above three options are correct										
84.		reaction of 1 mole	each	of p-hydroxyac	etophe	enone and methy	l mag	nesium iodide will			
	give	; 	_								
	a)	$CH_4 + IMgO - ($	$\supseteq \rangle -$	-COCH ₃							
	b)	CH ₃ O-()	-CO	CH ₃							
	c)	OMgI H ₃ C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-	-OH								
	d)	/ _ \ /	lgl COC	H ₃							
85.		ich of the following $CN \rightarrow CH_3CH_2NH_2$		ot be used for fo	ollowi	ng conversion?					
	_	Pt/H ₂	2		b)	LiAlH ₄					
	c)	Na/C ₂ H ₅ OH			d)	SnCl ₂ /HCl					
86.	AH_2	NOH B Reduction	<u>CNO</u>	$CI \hookrightarrow CH_3CH_2CI$							
		ne above sequence									
	a) Methanal, methyl amine										
	b) Acetone, ethaneamine										
	c) Ethanal, diamethyl amine										
	d) Acetaldehyde, ethyl amine										
87.	The enzyme pepsin hydrolyses										
	a) Proteins to amino acids b) Fata to fatty acids										
	b) Fats to fatty acidsc) Glucose to ethyl alcohol										
	d)	Poloysaccharides									
88.	_	ich of the following			ion of	rubber?					
-	a)	SF ₆	b)	CF ₄	c)	Cl_2F_2	d)	C_2F_2			
89.	-	ron is polymer is	,	•	,		,				
	a)	Glycol and formal	dehy	de							

- b) Glycol and phenol
- c) Glycol and phthalic acid
- d) Glycol and terephthalic acid
- 90. Hippuric acid has the formula
 - a) CH₃CONHCH₂COOH
 - b) C₆H₅CONHCH₂COOH
 - c) C₆H₅NHCOOH
 - d) NH₂CONHCOOH