MERITSTORE

NEET-PHYSICS

1.

Given, potential difference V = (8 \pm 0.5) volt and current I = (2 \pm 0.2)A. The value of

	resistance <i>R</i> is								
	a) $4 \pm 16.25\%$ b) $4 \pm 6.25\%$							
	c) $4 \pm 10\%$) $4 \pm 8\%$							
2.	The dimensions of emf in MKS is								
	a) $ML^{-1}T^{-2}Q^{-2}$ b) $ML^2T^{-2}Q^{-2}$							
		$ML^2T^{-2}Q^{-1}$							
3.	A particle moving along a straight line has a ve	locity v ms ⁻¹ , when it cleared a distance of							
	y metre. These two are connected by the relation $v = \sqrt{49 + y}$. When its velocity is 1ms ⁻¹								
	its acceleration (in ms^{-2})is	,							
	a) 1 b) 2 c) 7 d) 0.5							
4.	A fighter plane enters inside the enemy territor	,							
	250 ms^{-1} and moves horizontally with constant								
		enemy tank at the border, spot the plane and fire shots at an angle $\theta = 60^{\circ}$ with the							
	horizontal and with velocity $u = 600 \text{ ms}^{-1}$. At	_							
	the shot?								
	a) $1500\sqrt{3}$ m								
	b) 125 m								
	c) 1400 m								
	d) 2473 m								
5.	A particle moves in a circle of radius 30cm. Its liner speed is given by $v = 2t$, where t is in								
	second and v in ms ⁻¹ . Find out its, radial and tangential acceleration at $t=3$ s,								
	respectively,								
	a) 220 ms^{-2} , 50 ms^{-2}) 100 ms^{-2} , 5 ms^{-2} c) 120 ms^{-2} , 2 ms^{-2} d) 110 ms^{-2} , 10 m							
6.	Two bodies of masses m_1 and m_2 are connected	d by a light, inextensible string which passe							
	over a frictionless pulley. If the pulley is moving upward with uniform acceleration g, then								
	the tension in the string is								
	a) $\frac{4m_1m_2}{m_1+m_2}$ g) $\frac{m_1m_2}{4m_1m_2}$ g							
	$m_1 + m_2$ ^g								
	m_1m_2	$\frac{m_1 - m_2}{m_1 + m_2} g^2$							
	c) $\frac{m_1 m_2}{m_1 + m_2}$ g	$) m_1 + m_2$							
_									
7.	A stone weighing 1 kg and sliding on ice with a								
	10 sec. The force of friction (assuming it to be o	constant) will be							

8.	a) If W		,	-0.2 N	,	0.2 <i>N</i>	d)	20 N R along three
0.	If W_1 , W_2 and W_3 represent the work done in moving a particle from A to B along three different paths 1, 2 and 3 respectively (as shown) in the gravitational field of a point mass							=
	m, find the correct relation between W_1 , W_2 and W_3							
	B B							
	1	m 2 3						
	A —	147 > 147 > 147			1-3	147 147 147		
	a)	$W_1 > W_2 > W_3$				$W_1 = W_2 = W_3$		
9.	-	$W_1 < W_2 < W_3$	dorra	long 100 kW wh		$W_2 > W_1 > W_3$	sf 100	O ray/min What
J.	An automobile engine develops $100 kW$ when rotating at a speed of $1800 rev/min$. What torque does it deliver							
	a)	350 N-m	b)	440 N-m	c)	531 <i>N-m</i>	d)	628 N-m
10.	-	ody is rolling down	_		,		,	
10.		e, then the body is		rennea plane. Il i		10141101113 1070 0	т ту.ш.	in cransiacory
	a)	Ring	u		b)	Cylinder		
	c)	Hollow ball			d)	Solid ball		
11.	-	us looks brighter t	han o	ther planets beca	-			
	a) It is heavier than other planets							
	b)	It has higher dens		=				
	c)	It is closer to the	-	-	ts			
	d)	It has no atmosph	iere					
12.	The ratio of two specific heats of gas C_p/C_v for argon is 1.6 and for hydrogen is 1.4.							
	Adiabatic elasticity of argon at pressure <i>P</i> is <i>E</i> . Adiabatic elasticity of hydrogen will also b							
	equ	al to E at the press	sure					
	a)	P	b)	$\frac{8}{7}P$	c)	$\frac{7}{8}P$	d)	1.4 <i>P</i>
13.		ording to Bernoull		uation				
	$\frac{P}{\rho g} + h + \frac{1}{2} \frac{v^2}{g} = \text{constant}$							
	The terms A, B and C are generally called respectively							
	a) Gravitational head, pressure head and velocity headb) Gravity, gravitational head and velocity head							
	b)			-		, ,		
	c)	Pressure head, gr			elocity	y head		
1.4	d)	Gravity, pressure		=	CII. I		1	
14.	To what height should a cylindrical vessel be filled with a homogeneous liquid to make the							
	force with which the liquid presses on the sides of the vessel equal to the force exerted by the liquid on the bottom of the vessel. If should be							force exerted by
	a)	Equal to the radiu		uie vessei. II SIIOl		Less than radius		
	aj	Equal to the rault	ເວ		b)	Less man raulus		

d)

When two ends of a rod wrapped with cotton are maintained at different temperatures

and after same time every point of the rod attains a constant temperature, then

Four times of radius

c) More than radius

15.

a) Conduction of heat at different points of the rod stops because the temperature is not						
increasing b) Rod is bad conductor of heat						
c) Heat is being radiated from each point of the rod						
d) Each point of the rod is giving heat to its neighbour at the same rate at which it is						
receiving heat						
An ideal gas expands in such a manner that its pressure and volume can be related by						
equation PV^2 = constant. During this process, the gas is						
a) Heated						
b) Cooled						
c) Neither heated nor cooledd) First heated and then cooled						
,						
When heat is given to a gas in an isothermal change, the result will be a) External work done						
b) Rise in temperaturec) Increase in internal energy						
d) External work done and also rise in temp.						
One mole of monoatomic gas and three moles of diatomic gas are put together in a						
container. The molar specific heat (in J K^{-1} mol ⁻¹) at constant volume is						
$(R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1})$						
a) 18.7 b) 18.9						
c) 19.2 d) None of these						
The total energy of a simple harmonic oscillator is proportional to						
a) Square root of displacement						
b) Velocity						
c) Frequency						
d) Square of the amplitude						
A simple pendulum is suspended from the ceiling of a lift. When the lift is at rest its						
time period is T . With what acceleration should the lift be accelerated upwards in						
order to reduce its period to $T/2$? (g is acceleration due to gravity)						
a) 2 g b) 3 g c) 4 g d) g						
An open organ pipe of length / vibrates in its fundamental mode. The pressure vibration is						
maximum						
a) At the two ends						
b) At the distance 1/2 inside the ends						
c) At the distance 1/4 inside the ends						
d) At the distance 1/8 inside the ends						
A capacitor is charged by a battery and the energy stored is U . The battery is now remove						

and the separation distance between the plates is doubled. The energy stored now is

16.

17.

18.

19.

20.

21.

22.

	a) $\frac{U}{2}$	b)	U	c)	2 <i>U</i>	d)	4U		
23.	The charge on two separated at 2.0 ma) 2.9 N, repuls	n. How mi				them			
	c) 1.2 N, repulsi	ive		d)	0.9 N, attractive	<u></u>			
24.	n Small drops of large drop, then i	same size		,			form a single		
	a) <i>Vn</i>	b)	Vn^{-1}	c)	$V n^{1/3}$	d)	$Vn^{2/3}$		
25.	If in the circuit, p	ower diss	ipation is 150 W,	then	R is				
	a) 2Ω	b)	6 Ω	c)	5 Ω	d)	4 Ω		
26.			es are connected	togeth	ner as shown in t	he figu	are. The current in		
	the arm BD will b	e							
	a) Half the curre b) Zero c) Twice the cur								
	•	ne current	in the arm ABC						
27.	How many coulombs of electric charge must pass through acidulated water in order to								
	release 22.4 L Of	hydrogen	at NTP?						
	a) 96500 Farad	ay		b)	193000 coulom	b			
	c) 196500 Fara	day		d)	96500 coulomb				
28.	A rectangular coi a uniform magne plane of the coil.	tic field <i>B</i>	= 0.5 T with the itude of the torqu	direct	tion of magnetic	field p			
	a) Zero	b)	200 N-m	c)	2 <i>N-m</i>	d)	10 <i>N-m</i>		
29.	The relation betw	•	and I in SI unit is						
	a) $B = \mu_0 (H + I)$			b)	$B = H + 4\mu I$				
	=	$H=\mu_0(E)$	•	d)	None of these				
30.	When a ferromag a) Is permanent			tempe	erature above its	curie j	point, the material		

- b) Remains ferromagnetic
- c) Behaves like a diamagnetic material
- d) Behaves like a paramagnetic material
- 31. As shown in the figure, P and Q are two coaxial conducting loops separated by some distance. When the switch S is closed, a clockwise current I_P flows in P (as seen by E) and an induced current I_{Q_1} flows in Q. The switch remains closed for a long time. When S is opened, a current I_{Q_2} flows in Q. Then the directions of I_{Q_1} and I_{Q_2} (as seen by E) are

- a) Respectively clockwise and anticlockwise
- b) Both clockwise
- c) Both anticlockwise
- d) Respectively anticlockwise and clockwise
- 32. A uniformly wound solenoidal coil of self inductance 1.8×10^{-4} H and resistance 6 Ω is broken up into two identical coils. These identical coils are then connected in parallel across a 12 V battery of negligible resistance. The time constant of the current in the circuit and the steady state current through battery is
 - a) 3×10^{-5} s, 8 A
 - b) 1.5×10^{-5} s, 8 A
 - c) 0.75×10^{-4} s, 4 A
 - d) 6×10^{-5} s, 2 A
- 33. A resistor and a capacitor are connected in series with an AC source. If the potential drop across the capacitor is 5 V and that across resistor is 12 V, then applied voltage is
 - a) 13 V
- b) 17 V
- c) 5 V
- d) 12 V
- 34. The temperature variation in the region of stratosphere lies from
 - a) 290 K to 220 K

b) 220 K to 280 K

c) 220 K to 380 K

- d) 180 K to 700 K
- 35. The graph shows variation of v with change in u for a mirror. Points plotted above the point P on the curve are for values of v

a) Smaller then *f*

b) Smaller then 2*f*

c) Larger then 2*f*

- d) Larger then f
- 36. An achromatic prism is made by crown glass prism ($A_c = 19^\circ$) and flint glass prism ($A_F = 6^\circ$). If $^C\mu_v = 1.5$ and $^F\mu_v = 1.66$, then resultant deviation for red coloured ray

	will be							
	a) 1.04° b) 5°	c)	0.96° d) 13.5°					
37.	In a given direction, the intensities of the scatbeams of light are in the ratio of 256:81. The the frequency of the second beam is							
	a) 64:127	b)	1:2					
	c) 64:27	d)	None of these					
38.	A radio transmitter operates at a frequency of	f 880	kHz and a power of 10 kW . The number					
	of photons emitted per second are							
	a) 1.72×10^{31}		1327×10^{34}					
	c) 13.27×10^{34}	d)	0.075×10^{-34}					
39.	If f_1 , f_2 and f_3 are the frequencies of corresponding	onding	g K_lpha , K_eta and $L_lpha X$ -rays of an element,					
	then							
	a) $f_1 = f_2 = f_3$	-	$f_1 - f_2 = f_3$					
	c) $f_2 = f_1 + f_3$	d)	$f_2^2 = f_1 f_3$					
40.	What is the radius of Iodine atom? (Atomic n							
	a) 2.5×10^{-11} m	b)	2.5×10^{-9} m					
	c) 7×10^{-9} m	d)	7×10^{-11} m					
41.	A gamma ray photon creates an electron-pose electron is 0.5 <i>MeV</i> and the total K.E. of the energy of the gamma ray photon must be a) 0.78 <i>MeV</i> b) 1.78 <i>MeV</i>	electro	on-positron pair is 0.78 <i>MeV</i> , then the					
42.	To determine the half- life of radioactive elements	_	,					
	$\ln \left \frac{dN(t)}{dt} \right $ <i>versus t.</i> Here $\frac{dN(t)}{dt}$ is the rate of radioactive decay at time <i>t.</i> If the number of							
	radioactive nuclei of this element decreases b							
	+							
	5-4-							
	3 − 1							
	a) 8 ° b) 7	c)	4 d) 8.5					
43.	The laptop PC's modern electronic watches a	nd ca	lculators use the following for display					
	a) Single crystal	b)	Poly crystal					
	c) Liquid crystal	d)	Semiconductors					
44.	Mean optical power launched into an 8 km fibre is 120 μ W and mean output power is							
	$4 \mu W$, then the overall attenuation is (Given l	og 30	= 1.477)					
	a) 14.77 <i>dB</i>	b)	16.77 <i>dB</i>					
	c) 3.01 <i>dB</i>	d)	None of these					
45.	Basically, a communication system is a							
	a) Transmitter	b)	Receiver					

c) Messenger

d) None of these